import streamlit as st from keras.models import load_model import librosa import numpy as np import pickle # Model ve eğitim tarihçesini yükle model = load_model('my_model.h5') with open('pkl.pkl', 'rb') as file_pi: history = pickle.load(file_pi) def detect_fake(sound_file): sound_signal, sample_rate = librosa.load(sound_file, res_type="kaiser_fast") mfcc_features = librosa.feature.mfcc(y=sound_signal, sr=sample_rate, n_mfcc=40) mfccs_features_scaled = np.mean(mfcc_features.T, axis=0) mfccs_features_scaled = mfccs_features_scaled.reshape(1, -1) result_array = model.predict(mfccs_features_scaled) result_classes = ["FAKE", "REAL"] result = np.argmax(result_array[0]) return result_classes[result] # Streamlit arayüzü st.title('Ses Doğrulama Sistemi') uploaded_file = st.file_uploader("Ses dosyası yükle", type=["wav", "mp3", "ogg"]) if uploaded_file is not None: # Dosyayı kaydet with open(uploaded_file.name, "wb") as f: f.write(uploaded_file.getbuffer()) result = detect_fake(uploaded_file.name) st.write(f"Tahmin: {result}")