Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 17,108 Bytes
767d579 64dd40c f11b057 1380fc9 4af3178 64dd40c b4966ee bd1cf3d 46022eb 78db81b 4af3178 f11b057 4af3178 cd84165 4af3178 7aae94f 4af3178 7aae94f 4af3178 099d855 f1fa713 bcadbe0 64dd40c ac3fdf5 f61dd83 3ffdc42 1e84aac 4af3178 1e84aac c05e080 1e84aac 2c58564 1e84aac 4af3178 1e84aac 4af3178 f11b057 4af3178 f11b057 cf49ed7 f11b057 cf49ed7 4af3178 7aae94f 4af3178 7aae94f f1fa713 7aae94f 767d579 7aae94f f11b057 7aae94f 767d579 7aae94f f11b057 7aae94f 767d579 7aae94f 4af3178 01976f0 4af3178 f1fa713 4af3178 a812c3b 4af3178 f1fa713 4af3178 7aae94f 4af3178 dbfa15a 6135b88 dbfa15a 4af3178 f1fa713 4af3178 01976f0 4af3178 f8ed0b8 4af3178 6181979 4af3178 7aae94f 4af3178 f11b057 4af3178 d2198dc 4d67578 88c25a0 2a75cd8 4af3178 b4966ee eafd5c8 b4966ee 3ffdc42 17e0108 3ffdc42 1bd4020 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
from functools import reduce
import json
import pickle
import os
import re
import gradio as gr
import pandas as pd
from tqdm.autonotebook import tqdm
from utils.model_size import get_model_parameters_memory
from refresh import TASK_TO_METRIC, TASKS, PRETTY_NAMES, TASKS_CONFIG, BOARDS_CONFIG
from envs import REPO_ID
from refresh import PROPRIETARY_MODELS, SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS, CROSS_ENCODERS, BI_ENCODERS, TASK_DESCRIPTIONS, EXTERNAL_MODEL_TO_LINK, make_clickable_model
PROPRIETARY_MODELS = {
make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, f"https://huggingface.co/spaces/{REPO_ID}"))
for model in PROPRIETARY_MODELS
}
SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS = {
make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, f"https://huggingface.co/spaces/{REPO_ID}"))
for model in SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS
}
CROSS_ENCODERS = {
make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, f"https://huggingface.co/spaces/{REPO_ID}"))
for model in CROSS_ENCODERS
}
BI_ENCODERS = {
make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, f"https://huggingface.co/spaces/{REPO_ID}"))
for model in BI_ENCODERS
}
def make_datasets_clickable(df):
"""Does not work"""
if "BornholmBitextMining" in df.columns:
link = "https://huggingface.co/datasets/strombergnlp/bornholmsk_parallel"
df = df.rename(
columns={f'BornholmBitextMining': '<a target="_blank" style="text-decoration: underline" href="{link}">BornholmBitextMining</a>',})
return df
# 1. Force headers to wrap
# 2. Force model column (maximum) width
# 3. Prevent model column from overflowing, scroll instead
# 4. Prevent checkbox groups from taking up too much space
css = """
table > thead {
white-space: normal
}
table {
--cell-width-1: 250px
}
table > tbody > tr > td:nth-child(2) > div {
overflow-x: auto
}
.filter-checkbox-group {
max-width: max-content;
}
"""
"""
Each inner tab can have the following keys:
- language: The language of the leaderboard
- language_long: [optional] The long form of the language
- description: The description of the leaderboard
- credits: [optional] The credits for the leaderboard
- data: The data for the leaderboard
"""
# No more refreshing manually, happens daily
# def get_refresh_function(task_category, task_list):
# def _refresh():
# data_task_category = get_mteb_data(tasks=[task_category], datasets=task_list)
# data_task_category.drop(columns=["Embedding Dimensions", "Max Tokens"], inplace=True)
# return data_task_category
# return _refresh
# def get_refresh_overall_function(tasks):
# return lambda: get_mteb_average(tasks)[0]
# load in the pre-calculated `all_data_tasks` and `boards_data`
print(f"Loading pre-calculated data....")
with open("all_data_tasks.pkl", "rb") as f:
all_data_tasks = pickle.load(f)
with open("boards_data.pkl", "rb") as f:
boards_data = pickle.load(f)
#### Caclulate Metadata
# Exact, add all non-nan integer values for every dataset
NUM_SCORES = 0
DATASETS = []
MODELS = []
# LANGUAGES = []
for d in all_data_tasks:
# NUM_SCORES += d.iloc[:, 1:].apply(lambda x: sum([1 for y in x if isinstance(y, float) and not np.isnan(y)]), axis=1).sum()
cols_to_ignore = 4 if "Average" in d.columns else 3
# Count number of scores including only non-nan floats & excluding the rank column
NUM_SCORES += d.iloc[:, cols_to_ignore:].notna().sum().sum()
# Exclude rank & model name column (first two); Do not count different language versions as different datasets
DATASETS += [i.split(" ")[0] for i in d.columns[cols_to_ignore:]]
# LANGUAGES += [i.split(" ")[-1] for i in d.columns[cols_to_ignore:]]
MODELS += d["Model"].tolist()
NUM_DATASETS = len(set(DATASETS))
# NUM_LANGUAGES = len(set(LANGUAGES))
NUM_MODELS = len(set(MODELS))
data = {
"Overall": {"metric": "Various, refer to task tabs", "data": []}
}
for task in TASKS:
data[task] = {"metric": TASKS_CONFIG[task]["metric_description"], "data": []}
for board, board_config in BOARDS_CONFIG.items():
init_name = board_config["title"]
if init_name in PRETTY_NAMES:
init_name = PRETTY_NAMES[init_name]
board_pretty_name = f"{init_name} leaderboard"
acronym = board_config.get("acronym", None)
board_icon = board_config.get("icon", None)
if board_icon is None:
board_icon = ""
credits = board_config.get("credits", None)
metric = board_config.get("metric", None)
if board_config["has_overall"]:
overall_pretty_name = board_pretty_name
if acronym is not None:
overall_pretty_name += f" ({board_config['acronym']})"
data["Overall"]["data"].append({
"language": board_config["title"],
"language_long": board_config["language_long"],
"description": f"**Overall MTEB {overall_pretty_name}** 🔮{board_icon}",
"data": boards_data[board]["data_overall"],
# "refresh": get_refresh_overall_function(board_config["tasks"]),
"credits": credits,
"metric": metric,
})
for task_category, task_category_list in board_config["tasks"].items():
task_icon = TASKS_CONFIG[task_category]['icon']
if "special_icons" in board_config and isinstance(board_config["special_icons"], dict):
task_icon = board_config["special_icons"].get(task_category, task_icon)
data[task_category]["data"].append({
"language": board_config["title"],
"language_long": board_config["language_long"],
"description": f"**{task_category} {board_pretty_name}** {task_icon}{board_icon}",
"data": boards_data[board]["data_tasks"][task_category],
# "refresh": get_refresh_function(task_category, task_category_list),
"credits": credits,
"metric": metric,
})
dataframes = []
full_dataframes = []
tabs = []
# The following JavaScript function updates the URL parameters based on the selected task and language
# Additionally, `update_url_task` and `update_url_language` are used to update the current task and language
# The current task and language are stored in the `current_task_language` and `language_per_task` JSON objects
# This is all a bit hacky, but it might be the only way to pass options to a JavaScript function via Gradio
set_window_url_params = """
function(goalUrlObject) {
const params = new URLSearchParams(window.location.search);
for (const [key, value] of Object.entries(goalUrlObject)) {
params.set(key, value);
};
const queryString = '?' + params.toString();
console.log(queryString);
window.history.replaceState({}, '', queryString);
return [];
}
"""
def update_url_task(event: gr.SelectData, current_task_language: dict, language_per_task: dict):
current_task_language["task"] = event.target.id
# Either use the cached language for this task or the 1st language
try:
current_task_language["language"] = language_per_task.get(event.target.id, event.target.children[1].children[0].id)
except Exception as e: # is Overall tab, no description
current_task_language["language"] = language_per_task.get(event.target.id, event.target.children[0].children[0].id)
return current_task_language, language_per_task
def update_url_language(event: gr.SelectData, current_task_language: dict, language_per_task: dict):
current_task_language["language"] = event.target.id
if "task" not in current_task_language:
current_task_language["task"] = "overall"
language_per_task[current_task_language["task"]] = event.target.id
return current_task_language, language_per_task
NUMERIC_INTERVALS = {
"<100M": pd.Interval(0, 100, closed="right"),
"100M to 250M": pd.Interval(100, 250, closed="right"),
"250M to 500M": pd.Interval(250, 500, closed="right"),
"500M to 1B": pd.Interval(500, 1000, closed="right"),
">1B": pd.Interval(1000, 1_000_000, closed="right"),
}
MODEL_TYPES = [
"Open",
"Proprietary",
"Sentence Transformers",
"Cross-Encoders",
"Bi-Encoders"
]
def filter_data(search_query, model_types, model_sizes, *full_dataframes):
output_dataframes = []
for df in full_dataframes:
# Apply the search query
if search_query:
names = df["Model"].map(lambda x: re.match("<a .+?>(.+)</a>", x).group(1))
masks = []
for query in search_query.split(";"):
masks.append(names.str.lower().str.contains(query.lower()))
df = df[reduce(lambda a, b: a | b, masks)]
# Apply the model type filtering
if set(model_types) != set(MODEL_TYPES):
masks = []
for model_type in model_types:
if model_type == "Open":
masks.append(~df["Model"].isin(PROPRIETARY_MODELS))
elif model_type == "Proprietary":
masks.append(df["Model"].isin(PROPRIETARY_MODELS))
elif model_type == "Sentence Transformers":
masks.append(df["Model"].isin(SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS))
elif model_type == "Cross-Encoders":
masks.append(df["Model"].isin(CROSS_ENCODERS))
elif model_type == "Bi-Encoders":
masks.append(df["Model"].isin(BI_ENCODERS))
if masks:
df = df[reduce(lambda a, b: a | b, masks)]
else:
df = pd.DataFrame(columns=df.columns)
# Apply the model size filtering
if set(model_sizes) != set(NUMERIC_INTERVALS.keys()):
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[model_size] for model_size in model_sizes]))
sizes = df["Model Size (Million Parameters)"].replace('', 0)
mask = sizes.apply(lambda size: any(numeric_interval.contains(size)))
df = df[mask]
output_dataframes.append(df)
return output_dataframes
with gr.Blocks(css=css) as block:
# Store the current task and language for updating the URL. This is a bit hacky, but it works
# for passing the current task and language to the JavaScript function via Gradio
current_task_language = gr.JSON(value=dict(), visible=False)
language_per_task = gr.JSON(value=dict(), visible=False)
gr.Markdown(f"""
Massive Text Embedding Benchmark (MTEB) Leaderboard. To submit, refer to the <a href="https://github.com/embeddings-benchmark/mteb/blob/main/docs/adding_a_model.md" target="_blank" style="text-decoration: underline">MTEB GitHub repository</a> 🤗 Refer to the [MTEB paper](https://arxiv.org/abs/2210.07316) for details on metrics, tasks and models.
""")
with gr.Row():
search_bar = gr.Textbox(
label="Search Bar (separate multiple queries with `;`)",
placeholder=" 🔍 Search for a model and press enter...",
)
filter_model_type = gr.CheckboxGroup(
label="Model types",
choices=MODEL_TYPES,
value=MODEL_TYPES,
interactive=True,
elem_classes=["filter-checkbox-group"]
)
filter_model_sizes = gr.CheckboxGroup(
label="Model sizes (in number of parameters)",
choices=list(NUMERIC_INTERVALS.keys()),
value=list(NUMERIC_INTERVALS.keys()),
interactive=True,
elem_classes=["filter-checkbox-group"],
scale=2,
)
with gr.Tabs() as outer_tabs:
# Store the tabs for updating them on load based on URL parameters
tabs.append(outer_tabs)
for task, task_values in data.items():
metric = task_values["metric"]
task_tab_id = task.lower().replace(" ", "-")
# Overall, Bitext Mining, Classification, etc.
pretty_task_name = task if task not in PRETTY_NAMES.keys() else PRETTY_NAMES[task]
with gr.Tab(pretty_task_name, id=task_tab_id) as task_tab:
# For updating the 'task' in the URL
task_tab.select(update_url_task, [current_task_language, language_per_task], [current_task_language, language_per_task]).then(None, [current_task_language], [], js=set_window_url_params)
if "Overall" != task:
gr.Markdown(TASK_DESCRIPTIONS[task])
with gr.Tabs() as task_tabs:
# Store the task tabs for updating them on load based on URL parameters
tabs.append(task_tabs)
for item in task_values["data"]:
item_tab_id = item["language"].lower().replace(" ", "-")
# English, Chinese, French, etc.
with gr.Tab(item["language"], id=item_tab_id) as item_tab:
# For updating the 'language' in the URL
item_tab.select(update_url_language, [current_task_language, language_per_task], [current_task_language, language_per_task], trigger_mode="always_last").then(None, [current_task_language], [], js=set_window_url_params)
specific_metric = metric
if item.get("metric", None) is not None:
specific_metric = item['metric']
with gr.Row():
gr.Markdown(f"""
{item['description']}
- **Metric:** {specific_metric}
- **Languages:** {item['language_long'] if 'language_long' in item else item['language']}
{"- **Credits:** " + item['credits'] if ("credits" in item and item["credits"] is not None) else ''}
""")
with gr.Row():
datatype = ["number", "markdown"] + ["number"] * len(item["data"])
dataframe = gr.Dataframe(item["data"], datatype=datatype, type="pandas", height=500)
dataframes.append(dataframe)
full_dataframe = gr.Dataframe(item["data"], datatype=datatype, type="pandas", visible=False)
full_dataframes.append(full_dataframe)
# with gr.Row():
# refresh_button = gr.Button("Refresh")
# refresh_button.click(item["refresh"], inputs=None, outputs=dataframe, concurrency_limit=20)
gr.Markdown(f"""
- **Total Datasets**: {NUM_DATASETS}
- **Total Languages**: 113
- **Total Scores**: {NUM_SCORES}
- **Total Models**: {NUM_MODELS}
""" + r"""
Made with ❤️ for NLP. If this work is useful to you, please consider citing:
```bibtex
@article{muennighoff2022mteb,
doi = {10.48550/ARXIV.2210.07316},
url = {https://arxiv.org/abs/2210.07316},
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
}
```
""")
def set_tabs_on_load(request: gr.Request):
"""Set the selected tab based on the URL parameters on load."""
global tabs
valid_task_keys = [child.id for child in tabs[0].children]
return_tabs = [gr.Tabs()] * len(tabs)
query_params = request.request.query_params
task_key = query_params.get("task", "overall")
if task_key not in valid_task_keys:
task_key = "overall"
return_tabs[0] = gr.Tabs(selected=task_key)
tabs_idx = valid_task_keys.index(task_key) + 1
language_key = query_params.get("language", "english")
return_tabs[tabs_idx] = gr.Tabs(selected=language_key)
current_task_language = {"task": task_key, "language": language_key}
language_per_task = {task_key: language_key}
return return_tabs + [current_task_language, language_per_task]
block.load(set_tabs_on_load, inputs=[], outputs=tabs + [current_task_language, language_per_task])
search_bar.submit(filter_data, inputs=[search_bar, filter_model_type, filter_model_sizes] + full_dataframes, outputs=dataframes)
filter_model_type.change(filter_data, inputs=[search_bar, filter_model_type, filter_model_sizes] + full_dataframes, outputs=dataframes)
filter_model_sizes.change(filter_data, inputs=[search_bar, filter_model_type, filter_model_sizes] + full_dataframes, outputs=dataframes)
block.queue(max_size=10)
block.launch()
# Possible changes:
# Could add graphs / other visual content
# Could add verification marks
# Sources:
# https://huggingface.co/spaces/gradio/leaderboard
# https://huggingface.co/spaces/huggingface-projects/Deep-Reinforcement-Learning-Leaderboard
# https://getemoji.com/
|