import os import io import gradio as gr import librosa import numpy as np import utils from inference.infer_tool import Svc import logging import soundfile import asyncio import argparse import edge_tts import gradio.processing_utils as gr_processing_utils logging.getLogger('numba').setLevel(logging.WARNING) logging.getLogger('markdown_it').setLevel(logging.WARNING) logging.getLogger('urllib3').setLevel(logging.WARNING) logging.getLogger('matplotlib').setLevel(logging.WARNING) limitation = os.getenv("SYSTEM") == "spaces" # limit audio length in huggingface spaces audio_postprocess_ori = gr.Audio.postprocess def audio_postprocess(self, y): data = audio_postprocess_ori(self, y) if data is None: return None return gr_processing_utils.encode_url_or_file_to_base64(data["name"]) gr.Audio.postprocess = audio_postprocess def create_vc_fn(model, sid): def vc_fn(input_audio, vc_transform, auto_f0, tts_text, tts_voice, tts_mode): if tts_mode: if len(tts_text) > 600 and limitation: return "Text is too long", None if tts_text is None or tts_voice is None: return "You need to enter text and select a voice", None asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save("tts.mp3")) audio, sr = librosa.load("tts.mp3", sr=16000, mono=True) raw_path = io.BytesIO() soundfile.write(raw_path, audio, 16000, format="wav") raw_path.seek(0) out_audio, out_sr = model.infer(sid, vc_transform, raw_path, auto_predict_f0=auto_f0, ) return "Success", (44100, out_audio.cpu().numpy()) if input_audio is None: return "You need to upload an audio", None sampling_rate, audio = input_audio duration = audio.shape[0] / sampling_rate if duration > 60 and limitation: return "Please upload an audio file that is less than 60 seconds. If you need to generate a longer audio file, please use Colab.", None audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32) if len(audio.shape) > 1: audio = librosa.to_mono(audio.transpose(1, 0)) if sampling_rate != 16000: audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000) raw_path = io.BytesIO() soundfile.write(raw_path, audio, 16000, format="wav") raw_path.seek(0) out_audio, out_sr = model.infer(sid, vc_transform, raw_path, auto_predict_f0=auto_f0, ) return "Success", (44100, out_audio.cpu().numpy()) return vc_fn def change_to_tts_mode(tts_mode): if tts_mode: return gr.Audio.update(visible=False), gr.Textbox.update(visible=True), gr.Dropdown.update(visible=True), gr.Checkbox.update(value=True) else: return gr.Audio.update(visible=True), gr.Textbox.update(visible=False), gr.Dropdown.update(visible=False), gr.Checkbox.update(value=False) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--device', type=str, default='cpu') parser.add_argument('--api', action="store_true", default=False) parser.add_argument("--share", action="store_true", default=False, help="share gradio app") args = parser.parse_args() hubert_model = utils.get_hubert_model().to(args.device) models = [] others = { "100% Orange Juice": "https://huggingface.co/spaces/mthsk/sovits-100orangejuice", "Miscellanous": "https://huggingface.co/spaces/mthsk/sovits-models-misc", "Vtubers": "https://huggingface.co/spaces/mthsk/sovits-models-vtubers" } voices = [] tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices()) for r in tts_voice_list: voices.append(f"{r['ShortName']}-{r['Gender']}") for f in os.listdir("models"): name = f model = Svc(fr"models/{f}/{f}.pth", f"models/{f}/config.json", device=args.device) cover = f"models/{f}/cover.png" if os.path.exists(f"models/{f}/cover.png") else None models.append((name, cover, create_vc_fn(model, name))) with gr.Blocks() as app: gr.Markdown( "#
Sovits Models\n" "##
The input audio should be clean and pure voice without background music.\n" "[![Original Repo](https://badgen.net/badge/icon/github?icon=github&label=Original%20Repo)](https://github.com/svc-develop-team/so-vits-svc)\n\n" ) with gr.Tabs(): for (name, cover, vc_fn) in models: with gr.TabItem(name): with gr.Row(): gr.Markdown( '
' f'' if cover else "" '
' ) with gr.Row(): with gr.Column(): vc_input = gr.Audio(label="Input audio"+' (less than 60 seconds)' if limitation else '') vc_transform = gr.Number(label="vc_transform", value=0) auto_f0 = gr.Checkbox(label="auto_f0", value=False) tts_mode = gr.Checkbox(label="tts (use edge-tts as input)", value=False) tts_text = gr.Textbox(visible=False, label="TTS text (600 words limitation)" if limitation else "TTS text") tts_voice = gr.Dropdown(choices=voices, visible=False) vc_submit = gr.Button("Generate", variant="primary") with gr.Column(): vc_output1 = gr.Textbox(label="Output Message") vc_output2 = gr.Audio(label="Output Audio") vc_submit.click(vc_fn, [vc_input, vc_transform, auto_f0, tts_text, tts_voice, tts_mode], [vc_output1, vc_output2]) tts_mode.change(change_to_tts_mode, [tts_mode], [vc_input, tts_text, tts_voice, auto_f0]) for category, link in others.items(): with gr.TabItem(category): gr.Markdown( f'''

Click to Go

''' ) app.queue(concurrency_count=1, api_open=args.api).launch(share=args.share)