Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,11 @@
|
|
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
import os
|
4 |
import numpy as np
|
5 |
import trimesh
|
6 |
import mcubes
|
|
|
7 |
from torchvision.utils import save_image
|
8 |
from PIL import Image
|
9 |
from transformers import AutoModel, AutoConfig
|
@@ -11,13 +13,13 @@ from rembg import remove, new_session
|
|
11 |
from functools import partial
|
12 |
from kiui.op import recenter
|
13 |
import kiui
|
14 |
-
|
15 |
|
16 |
# we load the pre-trained model from HF
|
17 |
class LRMGeneratorWrapper:
|
18 |
def __init__(self):
|
19 |
-
self.config = AutoConfig.from_pretrained("jadechoghari/
|
20 |
-
self.model = AutoModel.from_pretrained("jadechoghari/
|
21 |
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
22 |
self.model.to(self.device)
|
23 |
self.model.eval()
|
@@ -27,7 +29,7 @@ class LRMGeneratorWrapper:
|
|
27 |
|
28 |
model_wrapper = LRMGeneratorWrapper()
|
29 |
|
30 |
-
|
31 |
def preprocess_image(image, source_size):
|
32 |
session = new_session("isnet-general-use")
|
33 |
rembg_remove = partial(remove, session=session)
|
@@ -42,11 +44,9 @@ def preprocess_image(image, source_size):
|
|
42 |
image = torch.clamp(image, 0, 1)
|
43 |
return image
|
44 |
|
|
|
|
|
45 |
def get_normalized_camera_intrinsics(intrinsics: torch.Tensor):
|
46 |
-
"""
|
47 |
-
intrinsics: (N, 3, 2), [[fx, fy], [cx, cy], [width, height]]
|
48 |
-
Return batched fx, fy, cx, cy
|
49 |
-
"""
|
50 |
fx, fy = intrinsics[:, 0, 0], intrinsics[:, 0, 1]
|
51 |
cx, cy = intrinsics[:, 1, 0], intrinsics[:, 1, 1]
|
52 |
width, height = intrinsics[:, 2, 0], intrinsics[:, 2, 1]
|
@@ -54,52 +54,112 @@ def get_normalized_camera_intrinsics(intrinsics: torch.Tensor):
|
|
54 |
cx, cy = cx / width, cy / height
|
55 |
return fx, fy, cx, cy
|
56 |
|
57 |
-
|
58 |
def build_camera_principle(RT: torch.Tensor, intrinsics: torch.Tensor):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
"""
|
60 |
RT: (N, 3, 4)
|
61 |
intrinsics: (N, 3, 2), [[fx, fy], [cx, cy], [width, height]]
|
62 |
"""
|
|
|
63 |
fx, fy, cx, cy = get_normalized_camera_intrinsics(intrinsics)
|
|
|
|
|
|
|
|
|
|
|
64 |
return torch.cat([
|
65 |
-
|
66 |
-
|
67 |
], dim=-1)
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
w = h = 512
|
74 |
-
intrinsics = torch.tensor([
|
75 |
-
[fx, fy],
|
76 |
-
[cx, cy],
|
77 |
-
[w, h],
|
78 |
-
], dtype=torch.float32)
|
79 |
-
return intrinsics
|
80 |
|
81 |
-
def
|
82 |
-
dist_to_center = 1.5
|
83 |
-
canonical_camera_extrinsics = torch.tensor([[
|
84 |
-
[0, 0, 1, 1],
|
85 |
-
[1, 0, 0, 0],
|
86 |
-
[0, 1, 0, 0],
|
87 |
-
]], dtype=torch.float32)
|
88 |
-
canonical_camera_intrinsics = _default_intrinsics().unsqueeze(0)
|
89 |
-
source_camera = build_camera_principle(canonical_camera_extrinsics, canonical_camera_intrinsics)
|
90 |
-
return source_camera.repeat(batch_size, 1)
|
91 |
-
|
92 |
-
|
93 |
-
#Ref: https://github.com/jadechoghari/vfusion3d/blob/main/lrm/inferrer.py
|
94 |
-
def generate_mesh(image, source_size=512, render_size=384, mesh_size=512, export_mesh=True):
|
95 |
image = preprocess_image(image, source_size).to(model_wrapper.device)
|
96 |
source_camera = _default_source_camera(batch_size=1).to(model_wrapper.device)
|
97 |
-
# TODO: export video we need render_camera
|
98 |
-
# render_camera = _default_render_cameras(batch_size=1).to(model_wrapper.device)
|
99 |
|
100 |
with torch.no_grad():
|
101 |
planes = model_wrapper.forward(image, source_camera)
|
102 |
-
|
103 |
if export_mesh:
|
104 |
grid_out = model_wrapper.model.synthesizer.forward_grid(planes=planes, grid_size=mesh_size)
|
105 |
vtx, faces = mcubes.marching_cubes(grid_out['sigma'].float().squeeze(0).squeeze(-1).cpu().numpy(), 1.0)
|
@@ -108,34 +168,92 @@ def generate_mesh(image, source_size=512, render_size=384, mesh_size=512, export
|
|
108 |
vtx_colors = model_wrapper.model.synthesizer.forward_points(planes, vtx_tensor)['rgb'].float().squeeze(0).cpu().numpy()
|
109 |
vtx_colors = (vtx_colors * 255).astype(np.uint8)
|
110 |
mesh = trimesh.Trimesh(vertices=vtx, faces=faces, vertex_colors=vtx_colors)
|
111 |
-
|
112 |
mesh_path = "awesome_mesh.obj"
|
113 |
mesh.export(mesh_path, 'obj')
|
114 |
-
return mesh_path
|
115 |
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
def step_1_generate_obj(image):
|
118 |
-
mesh_path = generate_mesh(image)
|
119 |
-
return mesh_path
|
|
|
|
|
|
|
|
|
120 |
|
121 |
-
|
122 |
-
def step_2_display_3d_model(mesh_file):
|
123 |
return mesh_file
|
124 |
|
|
|
|
|
|
|
|
|
125 |
with gr.Blocks() as demo:
|
126 |
with gr.Row():
|
|
|
127 |
with gr.Column():
|
128 |
img_input = gr.Image(type="pil", label="Input Image")
|
129 |
-
|
|
|
|
|
130 |
obj_file_output = gr.File(label="Download .obj File")
|
131 |
-
|
|
|
132 |
with gr.Column():
|
133 |
-
model_output =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
def generate_and_visualize(image):
|
136 |
mesh_path = step_1_generate_obj(image)
|
137 |
return mesh_path, mesh_path
|
138 |
-
|
139 |
-
generate_button.click(generate_and_visualize, inputs=img_input, outputs=[obj_file_output, model_output])
|
140 |
|
141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# final one
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
import os
|
5 |
import numpy as np
|
6 |
import trimesh
|
7 |
import mcubes
|
8 |
+
import imageio
|
9 |
from torchvision.utils import save_image
|
10 |
from PIL import Image
|
11 |
from transformers import AutoModel, AutoConfig
|
|
|
13 |
from functools import partial
|
14 |
from kiui.op import recenter
|
15 |
import kiui
|
16 |
+
from gradio_litmodel3d import LitModel3D
|
17 |
|
18 |
# we load the pre-trained model from HF
|
19 |
class LRMGeneratorWrapper:
|
20 |
def __init__(self):
|
21 |
+
self.config = AutoConfig.from_pretrained("jadechoghari/vfusion3d", trust_remote_code=True)
|
22 |
+
self.model = AutoModel.from_pretrained("jadechoghari/vfusion3d", trust_remote_code=True)
|
23 |
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
24 |
self.model.to(self.device)
|
25 |
self.model.eval()
|
|
|
29 |
|
30 |
model_wrapper = LRMGeneratorWrapper()
|
31 |
|
32 |
+
# we preprocess the input image
|
33 |
def preprocess_image(image, source_size):
|
34 |
session = new_session("isnet-general-use")
|
35 |
rembg_remove = partial(remove, session=session)
|
|
|
44 |
image = torch.clamp(image, 0, 1)
|
45 |
return image
|
46 |
|
47 |
+
# Copied from https://github.com/facebookresearch/vfusion3d/blob/main/lrm/cam_utils.py and
|
48 |
+
# https://github.com/facebookresearch/vfusion3d/blob/main/lrm/inferrer.py
|
49 |
def get_normalized_camera_intrinsics(intrinsics: torch.Tensor):
|
|
|
|
|
|
|
|
|
50 |
fx, fy = intrinsics[:, 0, 0], intrinsics[:, 0, 1]
|
51 |
cx, cy = intrinsics[:, 1, 0], intrinsics[:, 1, 1]
|
52 |
width, height = intrinsics[:, 2, 0], intrinsics[:, 2, 1]
|
|
|
54 |
cx, cy = cx / width, cy / height
|
55 |
return fx, fy, cx, cy
|
56 |
|
|
|
57 |
def build_camera_principle(RT: torch.Tensor, intrinsics: torch.Tensor):
|
58 |
+
fx, fy, cx, cy = get_normalized_camera_intrinsics(intrinsics)
|
59 |
+
return torch.cat([
|
60 |
+
RT.reshape(-1, 12),
|
61 |
+
fx.unsqueeze(-1), fy.unsqueeze(-1), cx.unsqueeze(-1), cy.unsqueeze(-1),
|
62 |
+
], dim=-1)
|
63 |
+
|
64 |
+
def _default_intrinsics():
|
65 |
+
fx = fy = 384
|
66 |
+
cx = cy = 256
|
67 |
+
w = h = 512
|
68 |
+
intrinsics = torch.tensor([
|
69 |
+
[fx, fy],
|
70 |
+
[cx, cy],
|
71 |
+
[w, h],
|
72 |
+
], dtype=torch.float32)
|
73 |
+
return intrinsics
|
74 |
+
|
75 |
+
def _default_source_camera(batch_size: int = 1):
|
76 |
+
canonical_camera_extrinsics = torch.tensor([[
|
77 |
+
[0, 0, 1, 1],
|
78 |
+
[1, 0, 0, 0],
|
79 |
+
[0, 1, 0, 0],
|
80 |
+
]], dtype=torch.float32)
|
81 |
+
canonical_camera_intrinsics = _default_intrinsics().unsqueeze(0)
|
82 |
+
source_camera = build_camera_principle(canonical_camera_extrinsics, canonical_camera_intrinsics)
|
83 |
+
return source_camera.repeat(batch_size, 1)
|
84 |
+
|
85 |
+
def _center_looking_at_camera_pose(camera_position: torch.Tensor, look_at: torch.Tensor = None, up_world: torch.Tensor = None):
|
86 |
+
"""
|
87 |
+
camera_position: (M, 3)
|
88 |
+
look_at: (3)
|
89 |
+
up_world: (3)
|
90 |
+
return: (M, 3, 4)
|
91 |
+
"""
|
92 |
+
# by default, looking at the origin and world up is pos-z
|
93 |
+
if look_at is None:
|
94 |
+
look_at = torch.tensor([0, 0, 0], dtype=torch.float32)
|
95 |
+
if up_world is None:
|
96 |
+
up_world = torch.tensor([0, 0, 1], dtype=torch.float32)
|
97 |
+
look_at = look_at.unsqueeze(0).repeat(camera_position.shape[0], 1)
|
98 |
+
up_world = up_world.unsqueeze(0).repeat(camera_position.shape[0], 1)
|
99 |
+
|
100 |
+
z_axis = camera_position - look_at
|
101 |
+
z_axis = z_axis / z_axis.norm(dim=-1, keepdim=True)
|
102 |
+
x_axis = torch.cross(up_world, z_axis)
|
103 |
+
x_axis = x_axis / x_axis.norm(dim=-1, keepdim=True)
|
104 |
+
y_axis = torch.cross(z_axis, x_axis)
|
105 |
+
y_axis = y_axis / y_axis.norm(dim=-1, keepdim=True)
|
106 |
+
extrinsics = torch.stack([x_axis, y_axis, z_axis, camera_position], dim=-1)
|
107 |
+
return extrinsics
|
108 |
+
|
109 |
+
def compose_extrinsic_RT(RT: torch.Tensor):
|
110 |
+
"""
|
111 |
+
Compose the standard form extrinsic matrix from RT.
|
112 |
+
Batched I/O.
|
113 |
+
"""
|
114 |
+
return torch.cat([
|
115 |
+
RT,
|
116 |
+
torch.tensor([[[0, 0, 0, 1]]], dtype=torch.float32).repeat(RT.shape[0], 1, 1).to(RT.device)
|
117 |
+
], dim=1)
|
118 |
+
|
119 |
+
def _build_camera_standard(RT: torch.Tensor, intrinsics: torch.Tensor):
|
120 |
"""
|
121 |
RT: (N, 3, 4)
|
122 |
intrinsics: (N, 3, 2), [[fx, fy], [cx, cy], [width, height]]
|
123 |
"""
|
124 |
+
E = compose_extrinsic_RT(RT)
|
125 |
fx, fy, cx, cy = get_normalized_camera_intrinsics(intrinsics)
|
126 |
+
I = torch.stack([
|
127 |
+
torch.stack([fx, torch.zeros_like(fx), cx], dim=-1),
|
128 |
+
torch.stack([torch.zeros_like(fy), fy, cy], dim=-1),
|
129 |
+
torch.tensor([[0, 0, 1]], dtype=torch.float32, device=RT.device).repeat(RT.shape[0], 1),
|
130 |
+
], dim=1)
|
131 |
return torch.cat([
|
132 |
+
E.reshape(-1, 16),
|
133 |
+
I.reshape(-1, 9),
|
134 |
], dim=-1)
|
135 |
|
136 |
+
def _default_render_cameras(batch_size: int = 1):
|
137 |
+
M = 160
|
138 |
+
radius = 1.5
|
139 |
+
elevation = 0
|
140 |
+
camera_positions = []
|
141 |
+
rand_theta = np.random.uniform(0, np.pi/180)
|
142 |
+
elevation = np.radians(elevation)
|
143 |
+
for i in range(M):
|
144 |
+
theta = 2 * np.pi * i / M + rand_theta
|
145 |
+
x = radius * np.cos(theta) * np.cos(elevation)
|
146 |
+
y = radius * np.sin(theta) * np.cos(elevation)
|
147 |
+
z = radius * np.sin(elevation)
|
148 |
+
camera_positions.append([x, y, z])
|
149 |
+
camera_positions = torch.tensor(camera_positions, dtype=torch.float32)
|
150 |
+
extrinsics = _center_looking_at_camera_pose(camera_positions)
|
151 |
|
152 |
+
render_camera_intrinsics = _default_intrinsics().unsqueeze(0).repeat(extrinsics.shape[0], 1, 1)
|
153 |
+
render_cameras = _build_camera_standard(extrinsics, render_camera_intrinsics)
|
154 |
+
return render_cameras.unsqueeze(0).repeat(batch_size, 1, 1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
+
def generate_mesh(image, source_size=512, render_size=384, mesh_size=512, export_mesh=False, export_video=True, fps=30):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
image = preprocess_image(image, source_size).to(model_wrapper.device)
|
158 |
source_camera = _default_source_camera(batch_size=1).to(model_wrapper.device)
|
|
|
|
|
159 |
|
160 |
with torch.no_grad():
|
161 |
planes = model_wrapper.forward(image, source_camera)
|
162 |
+
|
163 |
if export_mesh:
|
164 |
grid_out = model_wrapper.model.synthesizer.forward_grid(planes=planes, grid_size=mesh_size)
|
165 |
vtx, faces = mcubes.marching_cubes(grid_out['sigma'].float().squeeze(0).squeeze(-1).cpu().numpy(), 1.0)
|
|
|
168 |
vtx_colors = model_wrapper.model.synthesizer.forward_points(planes, vtx_tensor)['rgb'].float().squeeze(0).cpu().numpy()
|
169 |
vtx_colors = (vtx_colors * 255).astype(np.uint8)
|
170 |
mesh = trimesh.Trimesh(vertices=vtx, faces=faces, vertex_colors=vtx_colors)
|
171 |
+
|
172 |
mesh_path = "awesome_mesh.obj"
|
173 |
mesh.export(mesh_path, 'obj')
|
|
|
174 |
|
175 |
+
return mesh_path, mesh_path
|
176 |
+
|
177 |
+
if export_video:
|
178 |
+
render_cameras = _default_render_cameras(batch_size=1).to(model_wrapper.device)
|
179 |
+
frames = []
|
180 |
+
chunk_size = 2
|
181 |
+
for i in range(0, render_cameras.shape[1], chunk_size):
|
182 |
+
frame_chunk = model_wrapper.model.synthesizer(
|
183 |
+
planes,
|
184 |
+
render_cameras[:, i:i + chunk_size],
|
185 |
+
render_size,
|
186 |
+
render_size,
|
187 |
+
0,
|
188 |
+
0
|
189 |
+
)
|
190 |
+
frames.append(frame_chunk['images_rgb'])
|
191 |
+
|
192 |
+
frames = torch.cat(frames, dim=1)
|
193 |
+
frames = (frames.permute(0, 2, 3, 1).cpu().numpy() * 255).astype(np.uint8)
|
194 |
+
|
195 |
+
video_path = "awesome_video.mp4"
|
196 |
+
imageio.mimwrite(video_path, frames, fps=fps)
|
197 |
+
|
198 |
+
return None, video_path
|
199 |
+
|
200 |
+
return None, None
|
201 |
+
|
202 |
def step_1_generate_obj(image):
|
203 |
+
mesh_path, _ = generate_mesh(image, export_mesh=True)
|
204 |
+
return mesh_path, mesh_path
|
205 |
+
|
206 |
+
def step_2_generate_video(image):
|
207 |
+
_, video_path = generate_mesh(image, export_video=True)
|
208 |
+
return video_path
|
209 |
|
210 |
+
def step_3_display_3d_model(mesh_file):
|
|
|
211 |
return mesh_file
|
212 |
|
213 |
+
# set up the example files from assets folder, we limit to 10
|
214 |
+
example_folder = "assets"
|
215 |
+
examples = [os.path.join(example_folder, f) for f in os.listdir(example_folder) if f.endswith(('.png', '.jpg', '.jpeg'))][:10]
|
216 |
+
|
217 |
with gr.Blocks() as demo:
|
218 |
with gr.Row():
|
219 |
+
|
220 |
with gr.Column():
|
221 |
img_input = gr.Image(type="pil", label="Input Image")
|
222 |
+
examples_component = gr.Examples(examples=examples, inputs=img_input, outputs=None, examples_per_page=3)
|
223 |
+
generate_mesh_button = gr.Button("Generate and Download Mesh")
|
224 |
+
generate_video_button = gr.Button("Generate and Download Video")
|
225 |
obj_file_output = gr.File(label="Download .obj File")
|
226 |
+
video_file_output = gr.File(label="Download Video")
|
227 |
+
|
228 |
with gr.Column():
|
229 |
+
model_output = LitModel3D(
|
230 |
+
clear_color=[0.1, 0.1, 0.1, 0], # can adjust background color for better contrast
|
231 |
+
label="3D Model Visualization",
|
232 |
+
scale=1.0,
|
233 |
+
tonemapping="aces", # can use aces tonemapping for more realistic lighting
|
234 |
+
exposure=1.0, # can adjust exposure to control brightness
|
235 |
+
contrast=1.1, # can slightly increase contrast for better depth
|
236 |
+
camera_position=(0, 0, 2), # will set initial camera position to center the model
|
237 |
+
zoom_speed=0.5, # will adjust zoom speed for better control
|
238 |
+
pan_speed=0.5, # will adjust pan speed for better control
|
239 |
+
interactive=True # this allow users to interact with the model
|
240 |
+
)
|
241 |
+
|
242 |
+
|
243 |
+
# clear outputs
|
244 |
+
def clear_model_viewer():
|
245 |
+
"""Reset the Model3D component before loading a new model."""
|
246 |
+
return gr.update(value=None)
|
247 |
|
248 |
def generate_and_visualize(image):
|
249 |
mesh_path = step_1_generate_obj(image)
|
250 |
return mesh_path, mesh_path
|
|
|
|
|
251 |
|
252 |
+
# first we clear the existing 3D model
|
253 |
+
img_input.change(clear_model_viewer, inputs=None, outputs=model_output)
|
254 |
+
|
255 |
+
# then, generate the mesh and video
|
256 |
+
generate_mesh_button.click(step_1_generate_obj, inputs=img_input, outputs=[obj_file_output, model_output])
|
257 |
+
generate_video_button.click(step_2_generate_video, inputs=img_input, outputs=video_file_output)
|
258 |
+
|
259 |
+
demo.launch(debug=True)
|