File size: 6,933 Bytes
9b6b78e
 
 
d9b1305
 
 
9b6b78e
 
 
 
d7d24e9
9b6b78e
 
 
b04706d
9b6b78e
 
 
 
29b4150
9b6b78e
452f87d
9b6b78e
 
 
 
 
 
b04706d
d9b1305
9b6b78e
 
1fa0c6b
9b6b78e
 
 
 
 
69d5ab5
 
 
d9b1305
69d5ab5
d9b1305
9b6b78e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9b1305
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5e043c
9b6b78e
97e2c82
d9b1305
9b6b78e
 
 
 
 
 
 
0f37f95
9b6b78e
 
452f87d
9b6b78e
 
 
d9b1305
97e2c82
d9b1305
97e2c82
d9b1305
9b6b78e
ad3f3da
d9b1305
9b6b78e
 
 
 
 
 
6e4a082
9b6b78e
 
 
 
 
 
 
 
 
 
 
 
af29733
 
518cd76
 
 
 
9b6b78e
 
518cd76
e9c77aa
44850e7
e9c77aa
 
 
9b6b78e
 
 
 
 
 
 
 
97e2c82
 
 
 
 
 
 
 
9b6b78e
89ce1c2
9b6b78e
 
 
 
 
 
 
ad3f3da
9b6b78e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97e2c82
9b6b78e
 
 
 
97e2c82
9b6b78e
53c59c7
 
 
 
 
 
 
 
97e2c82
53c59c7
 
 
 
 
97e2c82
53c59c7
 
 
 
 
 
 
 
97e2c82
 
 
 
9b6b78e
 
4d9a4f4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import os
import random
import uuid
from urllib.parse import quote
from requests import get
from bs4 import BeautifulSoup

import gradio as gr
import numpy as np
from PIL import Image
import spaces
import torch
from diffusers import DiffusionPipeline

DESCRIPTION = """Hepbilen.com Seslendirme Aracı"""
if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may not work on CPU.</p>"

MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1536"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

NUM_IMAGES_PER_PROMPT = 1

valid_languages = {'tr', 'fr', 'esp', 'en'}

if torch.cuda.is_available():
    pipe = DiffusionPipeline.from_pretrained(
        "playgroundai/playground-v2.5-1024px-aesthetic",
        torch_dtype=torch.float16,
        use_safetensors=True,
        add_watermarker=False,
        variant="fp16"
    )
    if ENABLE_CPU_OFFLOAD:
        pipe.enable_model_cpu_offload()
    else:
        pipe.to(device)
        print("Loaded on Device!")

    if USE_TORCH_COMPILE:
        pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
        print("Model Compiled!")


def save_image(img):
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name


def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed


def translate_to_english(phrase, src_lang):
    if src_lang == 'en':
        return phrase

    dest_lang = 'en'
    encoded_phrase = quote(phrase)
    url = f"https://translate.glosbe.com/{src_lang}-{dest_lang}/{encoded_phrase}"
    response = get(url)

    if response.status_code == 200:
        soup = BeautifulSoup(response.text, 'html.parser')
        translation_div = soup.find('div', class_='w-full h-full bg-gray-100 h-full border p-2 min-h-25vh sm:min-h-50vh whitespace-pre-wrap break-words')
        translation = translation_div.text if translation_div else "Translation not found"
        return translation
    else:
        return "Error: Unable to translate"


@spaces.GPU(enable_queue=True)
def generate(
    phrase: str,
    input_lang: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    seed: int = 0,
    width: int = 1024,
    height: int = 1024,
    guidance_scale: float = 3,
    randomize_seed: bool = False,
    use_resolution_binning: bool = True,
    progress=gr.Progress(track_tqdm=True),
):
    pipe.to(device)
    seed = int(randomize_seed_fn(seed, randomize_seed))
    generator = torch.Generator().manual_seed(seed)

    if input_lang != 'en':
        prompt = translate_to_english(phrase, input_lang)
    else:
        prompt = phrase

    if not use_negative_prompt:
        negative_prompt = None  # type: ignore

    images = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        width=width,
        height=height,
        guidance_scale=guidance_scale,
        num_inference_steps=25,
        generator=generator,
        num_images_per_prompt=NUM_IMAGES_PER_PROMPT,
        use_resolution_binning=use_resolution_binning,
        output_type="pil",
    ).images

    image_paths = [save_image(img) for img in images]
    print(image_paths)
    return image_paths, seed


examples = [
    ["nyɔnu e nɔ sa tomati ɖo aximɛ", "fon"],
    ["ọba ilẹ̀ benin kan", "yo"],
    ["an astronaut riding a horse in space", "en"],
    ["a cartoon of a boy playing with a tiger", "en"],
    ["a cute robot artist painting on an easel, concept art", "en"],
    ["a close up of a woman wearing a transparent, prismatic, elaborate nemeses headdress, over the should pose, brown skin-tone", "en"]
]


css = '''
.gradio-container{max-width: 560px !important}
h1{text-align:center}
'''
with gr.Blocks(css=css) as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(
        value="Duplicate Space for private use",
        elem_id="duplicate-button",
        visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
    )
    with gr.Group():
        with gr.Row():
            input_lang = gr.Dropdown(choices=list(valid_languages), value='en', label='Input Language')
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0)
        result = gr.Gallery(label="Result", columns=NUM_IMAGES_PER_PROMPT, show_label=False)
    with gr.Accordion("Advanced options", open=False):
        with gr.Row():
            use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False)
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=True,
            )
        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=MAX_SEED,
            step=1,
            value=0,
        )
        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
        with gr.Row(visible=True):
            width = gr.Slider(
                label="Width",
                minimum=256,
                maximum=MAX_IMAGE_SIZE,
                step=32,
                value=1024,
            )
            height = gr.Slider(
                label="Height",
                minimum=256,
                maximum=MAX_IMAGE_SIZE,
                step=32,
                value=1024,
            )
        with gr.Row():
            guidance_scale = gr.Slider(
                label="Guidance Scale",
                minimum=0.1,
                maximum=20,
                step=0.1,
                value=3.0,
            )

    gr.Examples(
        examples=examples,
        inputs=[prompt, input_lang],
        outputs=[result, seed],
        fn=generate,
        cache_examples=CACHE_EXAMPLES,
    )

    use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt,
        outputs=negative_prompt,
        api_name=False,
    )

    gr.on(
        triggers=[
            prompt.submit,
            negative_prompt.submit,
            run_button.click,
        ],
        fn=generate,
        inputs=[
            prompt,
            input_lang,
            negative_prompt,
            use_negative_prompt,
            seed,
            width,
            height,
            guidance_scale,
            randomize_seed,
       ],
       outputs=[result, seed],
       api_name="run",
   )

if __name__ == "__main__":
   demo.queue(max_size=20).launch()