import gradio as gr import numpy as np import random from diffusers import AuraFlowPipeline import torch import spaces import uuid import os device = "cuda" if torch.cuda.is_available() else "cpu" #torch.set_float32_matmul_precision("high") #torch._inductor.config.conv_1x1_as_mm = True #torch._inductor.config.coordinate_descent_tuning = True #torch._inductor.config.epilogue_fusion = False #torch._inductor.config.coordinate_descent_check_all_directions = True pipe = AuraFlowPipeline.from_pretrained( "fal/AuraFlow", torch_dtype=torch.float16 ).to("cuda") #pipe.transformer.to(memory_format=torch.channels_last) #pipe.vae.to(memory_format=torch.channels_last) #pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True) #pipe.vae.decode = torch.compile(pipe.vae.decode, mode="max-autotune", fullgraph=True) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 def save_image(img): unique_name = str(uuid.uuid4()) + ".png" img.save(unique_name) return unique_name @spaces.GPU def infer(prompt, negative_prompt="", seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=30, progress=gr.Progress(track_tqdm=True)): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) options = { "prompt" : prompt, "negative_prompt" : negative_prompt, "width":width, "height":height, "guidance_scale" : guidance_scale, "num_inference_steps" : num_inference_steps, "generator" : generator } images = pipe(**options).images image_paths = [save_image(img) for img in images] return image_paths, seed examples = [ "A photo of a lavender cat", "Astronaut in a jungle grasping a sign board contain word 'I love SPACE', cold color palette, muted colors, detailed, futuristic", "a cat eating a piece of cheese", "a ROBOT riding a BLUE horse on Mars, photorealistic", "a cute robot artist painting on an easel, concept art", "An alien grasping a sign board contain word 'AuraFlow', futuristic, neonpunk, detailed", "Kids going to school, sketch" ] css=""" #col-container { margin: 0 auto; max-width: 600px; } """ if torch.cuda.is_available(): power_device = "GPU" else: power_device = "CPU" with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f""" # AuraFlow 0.1 Demo of the [AuraFlow 0.1](https://huggingface.co/fal/AuraFlow) 6.8B parameters open source diffusion transformer model [[blog](https://blog.fal.ai/auraflow/)] [[model](https://huggingface.co/fal/AuraFlow)] [[fal](https://fal.ai/models/fal-ai/aura-flow)] """) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Gallery(label="Result", columns=1, show_label=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=5, lines=4, placeholder="Enter a negative prompt", value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW", ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=5.0, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=28, ) gr.Examples( examples = examples, fn = infer, inputs = [prompt], outputs = [result, seed], cache_examples=True ) gr.on( triggers=[run_button.click, prompt.submit, negative_prompt.submit], fn = infer, inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs = [result, seed] ) demo.queue().launch()