Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,638 Bytes
3a1e48f 8340be4 3a1e48f 68b51dd 8ddce9c 399fa48 41238f8 8340be4 3a1e48f debbd96 21f9f22 ad7df92 42e179a 544fa37 41238f8 ad7df92 a550ff1 41238f8 872fe49 a550ff1 21f9f22 0609de7 21f9f22 0609de7 8755573 0609de7 3a1e48f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
import torch
import spaces
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL
from ip_adapter.ip_adapter_faceid import IPAdapterFaceID
from huggingface_hub import hf_hub_download
from insightface.app import FaceAnalysis
import gradio as gr
import cv2
base_model_path = "SG161222/Realistic_Vision_V4.0_noVAE"
vae_model_path = "stabilityai/sd-vae-ft-mse"
ip_ckpt = hf_hub_download(repo_id='h94/IP-Adapter-FaceID', filename="ip-adapter-faceid_sd15.bin", repo_type="model")
device = "cuda"
noise_scheduler = DDIMScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
steps_offset=1,
)
vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16)
pipe = StableDiffusionPipeline.from_pretrained(
base_model_path,
torch_dtype=torch.float16,
scheduler=noise_scheduler,
vae=vae,
)
ip_model = IPAdapterFaceID(pipe, ip_ckpt, device)
@spaces.GPU(enable_queue=True)
def generate_image(images, prompt, negative_prompt, progress=gr.Progress(track_tqdm=True)):
pipe.to(device)
app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))
faceid_all_embeds = []
for image in images:
face = cv2.imread(image)
faces = app.get(face)
faceid_embed = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
faceid_all_embeds.append(faceid_embed)
average_embedding = torch.mean(torch.stack(faceid_all_embeds, dim=0), dim=0)
image = ip_model.generate(
prompt=prompt, negative_prompt=negative_prompt, faceid_embeds=average_embedding, width=512, height=512, num_inference_steps=30
)
print(image)
return image
css = '''
h1{margin-bottom: 0 !important}
'''
demo = gr.Interface(
css=css,
fn=generate_image,
inputs=[
gr.Files(
label="Drag 1 or more photos of your face",
file_types=["image"]
),
gr.Textbox(label="Prompt",
info="Try something like 'a photo of a man/woman/person'",
placeholder="A photo of a [man/woman/person]..."),
gr.Textbox(label="Negative Prompt", placeholder="low quality")
],
outputs=[gr.Gallery(label="Generated Image")],
title="IP-Adapter-FaceID demo",
description="Demo for the [h94/IP-Adapter-FaceID model](https://huggingface.co/h94/IP-Adapter-FaceID)",
allow_flagging=False,
)
demo.launch() |