Spaces:
Running
on
Zero
Running
on
Zero
from copy import deepcopy | |
from dataclasses import dataclass | |
from typing import Any, Callable, Dict, List, Optional, Tuple, Union | |
from diffusers import StableDiffusionXLPipeline | |
from diffusers.image_processor import PipelineImageInput | |
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img import\ | |
rescale_noise_cfg, retrieve_latents, retrieve_timesteps | |
from diffusers.utils import BaseOutput, deprecate | |
from diffusers.utils.torch_utils import randn_tensor | |
import numpy as np | |
import PIL | |
import torch | |
from ..utils import * | |
from ..utils.sdxl import * | |
BATCH_ORDER = [ | |
"structure_uncond", "appearance_uncond", "uncond", "structure_cond", "appearance_cond", "cond", | |
] | |
def get_last_control_i(control_schedule, num_inference_steps): | |
if control_schedule is None: | |
return num_inference_steps, num_inference_steps | |
def max_(l): | |
if len(l) == 0: | |
return 0.0 | |
return max(l) | |
structure_max = 0.0 | |
appearance_max = 0.0 | |
for block in control_schedule.values(): | |
if isinstance(block, list): # Handling mid_block | |
block = {0: block} | |
for layer in block.values(): | |
structure_max = max(structure_max, max_(layer[0] + layer[1])) | |
appearance_max = max(appearance_max, max_(layer[2])) | |
structure_i = round(num_inference_steps * structure_max) | |
appearance_i = round(num_inference_steps * appearance_max) | |
return structure_i, appearance_i | |
class CtrlXStableDiffusionXLPipelineOutput(BaseOutput): | |
images: Union[List[PIL.Image.Image], np.ndarray] | |
structures = Union[List[PIL.Image.Image], np.ndarray] | |
appearances = Union[List[PIL.Image.Image], np.ndarray] | |
class CtrlXStableDiffusionXLPipeline(StableDiffusionXLPipeline): # diffusers==0.28.0 | |
def prepare_latents( | |
self, image, batch_size, num_images_per_prompt, num_channels_latents, height, width, | |
dtype, device, generator=None, noise=None, | |
): | |
batch_size = batch_size * num_images_per_prompt | |
if noise is None: | |
shape = ( | |
batch_size, | |
num_channels_latents, | |
height // self.vae_scale_factor, | |
width // self.vae_scale_factor | |
) | |
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
noise = noise * self.scheduler.init_noise_sigma # Starting noise, need to scale | |
else: | |
noise = noise.to(device) | |
if image is None: | |
return noise, None | |
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): | |
raise ValueError( | |
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" | |
) | |
# Offload text encoder if `enable_model_cpu_offload` was enabled | |
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
self.text_encoder_2.to("cpu") | |
torch.cuda.empty_cache() | |
image = image.to(device=device, dtype=dtype) | |
if image.shape[1] == 4: # Image already in latents form | |
init_latents = image | |
else: | |
# Make sure the VAE is in float32 mode, as it overflows in float16 | |
if self.vae.config.force_upcast: | |
image = image.to(torch.float32) | |
self.vae.to(torch.float32) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
elif isinstance(generator, list): | |
init_latents = [ | |
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i]) | |
for i in range(batch_size) | |
] | |
init_latents = torch.cat(init_latents, dim=0) | |
else: | |
init_latents = retrieve_latents(self.vae.encode(image), generator=generator) | |
if self.vae.config.force_upcast: | |
self.vae.to(dtype) | |
init_latents = init_latents.to(dtype) | |
init_latents = self.vae.config.scaling_factor * init_latents | |
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: | |
# Expand init_latents for batch_size | |
additional_image_per_prompt = batch_size // init_latents.shape[0] | |
init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0) | |
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: | |
raise ValueError( | |
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts." | |
) | |
else: | |
init_latents = torch.cat([init_latents], dim=0) | |
return noise, init_latents | |
def structure_guidance_scale(self): | |
return self._guidance_scale if self._structure_guidance_scale is None else self._structure_guidance_scale | |
def appearance_guidance_scale(self): | |
return self._guidance_scale if self._appearance_guidance_scale is None else self._appearance_guidance_scale | |
def __call__( | |
self, | |
prompt: Union[str, List[str]] = None, # TODO: Support prompt_2 and negative_prompt_2 | |
structure_prompt: Optional[Union[str, List[str]]] = None, | |
appearance_prompt: Optional[Union[str, List[str]]] = None, | |
structure_image: Optional[PipelineImageInput] = None, | |
appearance_image: Optional[PipelineImageInput] = None, | |
num_inference_steps: int = 50, | |
timesteps: List[int] = None, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
positive_prompt: Optional[Union[str, List[str]]] = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
guidance_scale: float = 5.0, | |
structure_guidance_scale: Optional[float] = None, | |
appearance_guidance_scale: Optional[float] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.Tensor] = None, | |
structure_latents: Optional[torch.Tensor] = None, | |
appearance_latents: Optional[torch.Tensor] = None, | |
prompt_embeds: Optional[torch.Tensor] = None, # Positive prompt is concatenated with prompt, so no embeddings | |
structure_prompt_embeds: Optional[torch.Tensor] = None, | |
appearance_prompt_embeds: Optional[torch.Tensor] = None, | |
negative_prompt_embeds: Optional[torch.Tensor] = None, | |
pooled_prompt_embeds: Optional[torch.Tensor] = None, | |
structure_pooled_prompt_embeds: Optional[torch.Tensor] = None, | |
appearance_pooled_prompt_embeds: Optional[torch.Tensor] = None, | |
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, | |
control_schedule: Optional[Dict] = None, | |
self_recurrence_schedule: Optional[List[int]] = [], # Format: [(start, end, num_repeat)] | |
decode_structure: Optional[bool] = True, | |
decode_appearance: Optional[bool] = True, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
guidance_rescale: float = 0.0, | |
original_size: Tuple[int, int] = None, | |
crops_coords_top_left: Tuple[int, int] = (0, 0), | |
target_size: Tuple[int, int] = None, | |
clip_skip: Optional[int] = None, | |
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
**kwargs, | |
): | |
# TODO: Add function argument documentation | |
callback = kwargs.pop("callback", None) | |
callback_steps = kwargs.pop("callback_steps", None) | |
if callback is not None: | |
deprecate( | |
"callback", | |
"1.0.0", | |
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", | |
) | |
if callback_steps is not None: | |
deprecate( | |
"callback_steps", | |
"1.0.0", | |
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", | |
) | |
# 0. Default height and width to U-Net | |
height = height or self.default_sample_size * self.vae_scale_factor | |
width = width or self.default_sample_size * self.vae_scale_factor | |
original_size = original_size or (height, width) | |
target_size = target_size or (height, width) | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( # TODO: Custom check_inputs for our method | |
prompt, | |
None, # prompt_2 | |
height, | |
width, | |
callback_steps, | |
negative_prompt = negative_prompt, | |
negative_prompt_2 = None, # negative_prompt_2 | |
prompt_embeds = prompt_embeds, | |
negative_prompt_embeds = negative_prompt_embeds, | |
pooled_prompt_embeds = pooled_prompt_embeds, | |
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds, | |
callback_on_step_end_tensor_inputs = callback_on_step_end_tensor_inputs, | |
) | |
self._guidance_scale = guidance_scale | |
self._structure_guidance_scale = structure_guidance_scale | |
self._appearance_guidance_scale = appearance_guidance_scale | |
self._guidance_rescale = guidance_rescale | |
self._clip_skip = clip_skip | |
self._cross_attention_kwargs = cross_attention_kwargs | |
self._denoising_end = None # denoising_end | |
self._denoising_start = None # denoising_start | |
self._interrupt = False | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
if batch_size * num_images_per_prompt != 1: | |
raise ValueError( | |
f"Pipeline currently does not support batch_size={batch_size} and num_images_per_prompt=1. " | |
"Effective batch size (batch_size * num_images_per_prompt) must be 1." | |
) | |
device = self._execution_device | |
# 3. Encode input prompt | |
text_encoder_lora_scale = ( | |
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None | |
) | |
if positive_prompt is not None and positive_prompt != "": | |
prompt = prompt + ", " + positive_prompt # Add positive prompt with comma | |
# By default, only add positive prompt to the appearance prompt and not the structure prompt | |
if appearance_prompt is not None and appearance_prompt != "": | |
appearance_prompt = appearance_prompt + ", " + positive_prompt | |
( | |
prompt_embeds_, | |
negative_prompt_embeds, | |
pooled_prompt_embeds_, | |
negative_pooled_prompt_embeds, | |
) = self.encode_prompt( | |
prompt = prompt, | |
prompt_2 = None, # prompt_2 | |
device = device, | |
num_images_per_prompt = num_images_per_prompt, | |
do_classifier_free_guidance = True, # self.do_classifier_free_guidance, TODO: Support no CFG | |
negative_prompt = negative_prompt, | |
negative_prompt_2 = None, # negative_prompt_2 | |
prompt_embeds = prompt_embeds, | |
negative_prompt_embeds = negative_prompt_embeds, | |
pooled_prompt_embeds = pooled_prompt_embeds, | |
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds, | |
lora_scale = text_encoder_lora_scale, | |
clip_skip = self.clip_skip, | |
) | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds_], dim=0).to(device) | |
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds_], dim=0).to(device) | |
# 3.1. Structure prompt embeddings | |
if structure_prompt is not None and structure_prompt != "": | |
( | |
structure_prompt_embeds, | |
negative_structure_prompt_embeds, | |
structure_pooled_prompt_embeds, | |
negative_structure_pooled_prompt_embeds, | |
) = self.encode_prompt( | |
prompt = structure_prompt, | |
prompt_2 = None, # prompt_2 | |
device = device, | |
num_images_per_prompt = num_images_per_prompt, | |
do_classifier_free_guidance = True, # self.do_classifier_free_guidance, TODO: Support no CFG | |
negative_prompt = negative_prompt if structure_image is None else "", | |
negative_prompt_2 = None, # negative_prompt_2 | |
prompt_embeds = structure_prompt_embeds, | |
negative_prompt_embeds = None, # negative_prompt_embeds | |
pooled_prompt_embeds = structure_pooled_prompt_embeds, | |
negative_pooled_prompt_embeds = None, # negative_pooled_prompt_embeds | |
lora_scale = text_encoder_lora_scale, | |
clip_skip = self.clip_skip, | |
) | |
structure_prompt_embeds = torch.cat( | |
[negative_structure_prompt_embeds, structure_prompt_embeds], dim=0 | |
).to(device) | |
structure_add_text_embeds = torch.cat( | |
[negative_structure_pooled_prompt_embeds, structure_pooled_prompt_embeds], dim=0 | |
).to(device) | |
else: | |
structure_prompt_embeds = prompt_embeds | |
structure_add_text_embeds = add_text_embeds | |
# 3.2. Appearance prompt embeddings | |
if appearance_prompt is not None and appearance_prompt != "": | |
( | |
appearance_prompt_embeds, | |
negative_appearance_prompt_embeds, | |
appearance_pooled_prompt_embeds, | |
negative_appearance_pooled_prompt_embeds, | |
) = self.encode_prompt( | |
prompt = appearance_prompt, | |
prompt_2 = None, # prompt_2 | |
device = device, | |
num_images_per_prompt = num_images_per_prompt, | |
do_classifier_free_guidance = True, # self.do_classifier_free_guidance, TODO: Support no CFG | |
negative_prompt = negative_prompt if appearance_image is None else "", | |
negative_prompt_2 = None, # negative_prompt_2 | |
prompt_embeds = appearance_prompt_embeds, | |
negative_prompt_embeds = None, # negative_prompt_embeds | |
pooled_prompt_embeds = appearance_pooled_prompt_embeds, # pooled_prompt_embeds | |
negative_pooled_prompt_embeds = None, # negative_pooled_prompt_embeds | |
lora_scale = text_encoder_lora_scale, | |
clip_skip = self.clip_skip, | |
) | |
appearance_prompt_embeds = torch.cat( | |
[negative_appearance_prompt_embeds, appearance_prompt_embeds], dim=0 | |
).to(device) | |
appearance_add_text_embeds = torch.cat( | |
[negative_appearance_pooled_prompt_embeds, appearance_pooled_prompt_embeds], dim=0 | |
).to(device) | |
else: | |
appearance_prompt_embeds = prompt_embeds | |
appearance_add_text_embeds = add_text_embeds | |
# 3.3. Prepare added time ids & embeddings, TODO: Support no CFG | |
if self.text_encoder_2 is None: | |
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) | |
else: | |
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim | |
add_time_ids = self._get_add_time_ids( | |
original_size, | |
crops_coords_top_left, | |
target_size, | |
dtype = prompt_embeds.dtype, | |
text_encoder_projection_dim = text_encoder_projection_dim, | |
) | |
negative_add_time_ids = add_time_ids | |
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0).to(device) | |
# 4. Prepare timesteps | |
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) | |
# 5. Prepare latent variables | |
num_channels_latents = self.unet.config.in_channels | |
latents, _ = self.prepare_latents( | |
None, batch_size, num_images_per_prompt, num_channels_latents, height, width, | |
prompt_embeds.dtype, device, generator, latents | |
) | |
if structure_image is not None: | |
structure_image = preprocess( # Center crop + resize | |
structure_image, self.image_processor, height=height, width=width, resize_mode="crop" | |
) | |
_, clean_structure_latents = self.prepare_latents( | |
structure_image, batch_size, num_images_per_prompt, num_channels_latents, height, width, | |
prompt_embeds.dtype, device, generator, structure_latents, | |
) | |
else: | |
clean_structure_latents = None | |
structure_latents = latents if structure_latents is None else structure_latents | |
if appearance_image is not None: | |
appearance_image = preprocess( # Center crop + resize | |
appearance_image, self.image_processor, height=height, width=width, resize_mode="crop" | |
) | |
_, clean_appearance_latents = self.prepare_latents( | |
appearance_image, batch_size, num_images_per_prompt, num_channels_latents, height, width, | |
prompt_embeds.dtype, device, generator, appearance_latents, | |
) | |
else: | |
clean_appearance_latents = None | |
appearance_latents = latents if appearance_latents is None else appearance_latents | |
# 6. Prepare extra step kwargs | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# 7. Denoising loop | |
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
# 7.1 Apply denoising_end | |
def denoising_value_valid(dnv): | |
return isinstance(self.denoising_end, float) and 0 < dnv < 1 | |
if ( | |
self.denoising_end is not None | |
and self.denoising_start is not None | |
and denoising_value_valid(self.denoising_end) | |
and denoising_value_valid(self.denoising_start) | |
and self.denoising_start >= self.denoising_end | |
): | |
raise ValueError( | |
f"`denoising_start`: {self.denoising_start} cannot be larger than or equal to `denoising_end`: " | |
+ f" {self.denoising_end} when using type float." | |
) | |
elif self.denoising_end is not None and denoising_value_valid(self.denoising_end): | |
discrete_timestep_cutoff = int( | |
round( | |
self.scheduler.config.num_train_timesteps | |
- (self.denoising_end * self.scheduler.config.num_train_timesteps) | |
) | |
) | |
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) | |
timesteps = timesteps[:num_inference_steps] | |
# 7.2 Optionally get guidance scale embedding | |
timestep_cond = None | |
if self.unet.config.time_cond_proj_dim is not None: # TODO: Make guidance scale embedding work with batch_order | |
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) | |
timestep_cond = self.get_guidance_scale_embedding( | |
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim | |
).to(device=device, dtype=latents.dtype) | |
# 7.3 Get batch order | |
batch_order = deepcopy(BATCH_ORDER) | |
if structure_image is not None: # If image is provided, not generating, so no CFG needed | |
batch_order.remove("structure_uncond") | |
if appearance_image is not None: | |
batch_order.remove("appearance_uncond") | |
structure_control_stop_i, appearance_control_stop_i = get_last_control_i(control_schedule, num_inference_steps) | |
if self_recurrence_schedule is None: | |
self_recurrence_schedule = [0] * num_inference_steps | |
self._num_timesteps = len(timesteps) | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
if self.interrupt: | |
continue | |
if i == structure_control_stop_i: # If not generating structure/appearance, drop after last control | |
if "structure_uncond" not in batch_order: | |
batch_order.remove("structure_cond") | |
if i == appearance_control_stop_i: | |
if "appearance_uncond" not in batch_order: | |
batch_order.remove("appearance_cond") | |
register_attr(self, t=t.item(), do_control=True, batch_order=batch_order) | |
# TODO: For now, assume we are doing classifier-free guidance, support no CF-guidance later | |
latent_model_input = self.scheduler.scale_model_input(latents, t) | |
structure_latent_model_input = self.scheduler.scale_model_input(structure_latents, t) | |
appearance_latent_model_input = self.scheduler.scale_model_input(appearance_latents, t) | |
all_latent_model_input = { | |
"structure_uncond": structure_latent_model_input[0:1], | |
"appearance_uncond": appearance_latent_model_input[0:1], | |
"uncond": latent_model_input[0:1], | |
"structure_cond": structure_latent_model_input[0:1], | |
"appearance_cond": appearance_latent_model_input[0:1], | |
"cond": latent_model_input[0:1], | |
} | |
all_prompt_embeds = { | |
"structure_uncond": structure_prompt_embeds[0:1], | |
"appearance_uncond": appearance_prompt_embeds[0:1], | |
"uncond": prompt_embeds[0:1], | |
"structure_cond": structure_prompt_embeds[1:2], | |
"appearance_cond": appearance_prompt_embeds[1:2], | |
"cond": prompt_embeds[1:2], | |
} | |
all_add_text_embeds = { | |
"structure_uncond": structure_add_text_embeds[0:1], | |
"appearance_uncond": appearance_add_text_embeds[0:1], | |
"uncond": add_text_embeds[0:1], | |
"structure_cond": structure_add_text_embeds[1:2], | |
"appearance_cond": appearance_add_text_embeds[1:2], | |
"cond": add_text_embeds[1:2], | |
} | |
all_time_ids = { | |
"structure_uncond": add_time_ids[0:1], | |
"appearance_uncond": add_time_ids[0:1], | |
"uncond": add_time_ids[0:1], | |
"structure_cond": add_time_ids[1:2], | |
"appearance_cond": add_time_ids[1:2], | |
"cond": add_time_ids[1:2], | |
} | |
concat_latent_model_input = batch_dict_to_tensor(all_latent_model_input, batch_order) | |
concat_prompt_embeds = batch_dict_to_tensor(all_prompt_embeds, batch_order) | |
concat_add_text_embeds = batch_dict_to_tensor(all_add_text_embeds, batch_order) | |
concat_add_time_ids = batch_dict_to_tensor(all_time_ids, batch_order) | |
# Predict the noise residual | |
added_cond_kwargs = {"text_embeds": concat_add_text_embeds, "time_ids": concat_add_time_ids} | |
concat_noise_pred = self.unet( | |
concat_latent_model_input, | |
t, | |
encoder_hidden_states = concat_prompt_embeds, | |
timestep_cond = timestep_cond, | |
cross_attention_kwargs = self.cross_attention_kwargs, | |
added_cond_kwargs = added_cond_kwargs, | |
).sample | |
all_noise_pred = batch_tensor_to_dict(concat_noise_pred, batch_order) | |
# Classifier-free guidance, TODO: Support no CFG | |
noise_pred = all_noise_pred["uncond"] +\ | |
self.guidance_scale * (all_noise_pred["cond"] - all_noise_pred["uncond"]) | |
structure_noise_pred = all_noise_pred["structure_cond"]\ | |
if "structure_cond" in batch_order else noise_pred | |
if "structure_uncond" in all_noise_pred: | |
structure_noise_pred = all_noise_pred["structure_uncond"] +\ | |
self.structure_guidance_scale * (structure_noise_pred - all_noise_pred["structure_uncond"]) | |
appearance_noise_pred = all_noise_pred["appearance_cond"]\ | |
if "appearance_cond" in batch_order else noise_pred | |
if "appearance_uncond" in all_noise_pred: | |
appearance_noise_pred = all_noise_pred["appearance_uncond"] +\ | |
self.appearance_guidance_scale * (appearance_noise_pred - all_noise_pred["appearance_uncond"]) | |
if self.guidance_rescale > 0.0: | |
noise_pred = rescale_noise_cfg( | |
noise_pred, all_noise_pred["cond"], guidance_rescale=self.guidance_rescale | |
) | |
if "structure_uncond" in all_noise_pred: | |
structure_noise_pred = rescale_noise_cfg( | |
structure_noise_pred, all_noise_pred["structure_cond"], | |
guidance_rescale=self.guidance_rescale | |
) | |
if "appearance_uncond" in all_noise_pred: | |
appearance_noise_pred = rescale_noise_cfg( | |
appearance_noise_pred, all_noise_pred["appearance_cond"], | |
guidance_rescale=self.guidance_rescale | |
) | |
# Compute the previous noisy sample x_t -> x_t-1 | |
concat_noise_pred = torch.cat( | |
[structure_noise_pred, appearance_noise_pred, noise_pred], dim=0, | |
) | |
concat_latents = torch.cat( | |
[structure_latents, appearance_latents, latents], dim=0, | |
) | |
structure_latents, appearance_latents, latents = self.scheduler.step( | |
concat_noise_pred, t, concat_latents, **extra_step_kwargs, | |
).prev_sample.chunk(3) | |
if clean_structure_latents is not None: | |
structure_latents = noise_prev(self.scheduler, t, clean_structure_latents) | |
if clean_appearance_latents is not None: | |
appearance_latents = noise_prev(self.scheduler, t, clean_appearance_latents) | |
# Self-recurrence | |
for _ in range(self_recurrence_schedule[i]): | |
if hasattr(self.scheduler, "_step_index"): # For fancier schedulers | |
self.scheduler._step_index -= 1 # TODO: Does this actually work? | |
t_prev = 0 if i + 1 >= num_inference_steps else timesteps[i + 1] | |
latents = noise_t2t(self.scheduler, t_prev, t, latents) | |
latent_model_input = torch.cat([latents] * 2) | |
register_attr(self, t=t.item(), do_control=False, batch_order=["uncond", "cond"]) | |
# Predict the noise residual | |
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} | |
noise_pred_uncond, noise_pred_ = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states = prompt_embeds, | |
timestep_cond = timestep_cond, | |
cross_attention_kwargs = self.cross_attention_kwargs, | |
added_cond_kwargs = added_cond_kwargs, | |
).sample.chunk(2) | |
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_ - noise_pred_uncond) | |
if self.guidance_rescale > 0.0: | |
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_, guidance_rescale=self.guidance_rescale) | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
# Callbacks | |
if callback_on_step_end is not None: | |
callback_kwargs = {} | |
for k in callback_on_step_end_tensor_inputs: | |
callback_kwargs[k] = locals()[k] | |
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
latents = callback_outputs.pop("latents", latents) | |
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds) | |
negative_pooled_prompt_embeds = callback_outputs.pop( | |
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds | |
) | |
add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids) | |
add_neg_time_ids = callback_outputs.pop("add_neg_time_ids", add_neg_time_ids) | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
step_idx = i // getattr(self.scheduler, "order", 1) | |
callback(step_idx, t, latents) | |
# "Reconstruction" | |
if clean_structure_latents is not None: | |
structure_latents = clean_structure_latents | |
if clean_appearance_latents is not None: | |
appearance_latents = clean_appearance_latents | |
# For passing important information onto the refiner | |
self.refiner_args = {"latents": latents.detach(), "prompt": prompt, "negative_prompt": negative_prompt} | |
if not output_type == "latent": | |
# Make sure the VAE is in float32 mode, as it overflows in float16 | |
if self.vae.config.force_upcast: | |
self.vae.to(torch.float32) # self.upcast_vae() is buggy | |
latents = latents.to(torch.float32) | |
structure_latents = structure_latents.to(torch.float32) | |
appearance_latents = appearance_latents.to(torch.float32) | |
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
image = self.image_processor.postprocess(image, output_type=output_type) | |
if decode_structure: | |
structure = self.vae.decode(structure_latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
structure = self.image_processor.postprocess(structure, output_type=output_type) | |
else: | |
structure = structure_latents | |
if decode_appearance: | |
appearance = self.vae.decode(appearance_latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
appearance = self.image_processor.postprocess(appearance, output_type=output_type) | |
else: | |
appearance = appearance_latents | |
# Cast back to fp16 if needed | |
if self.vae.config.force_upcast: | |
self.vae.to(dtype=torch.float16) | |
else: | |
return CtrlXStableDiffusionXLPipelineOutput( | |
images=latents, structures=structure_latents, appearances=appearance_latents | |
) | |
# Offload all models | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (image, structure, appearance) | |
return CtrlXStableDiffusionXLPipelineOutput(images=image, structures=structure, appearances=appearance) | |