File size: 5,335 Bytes
b888bcf
6a4b741
 
 
 
 
 
b888bcf
6a4b741
b888bcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a4b741
 
75a89e7
b888bcf
6a4b741
 
 
 
 
 
b888bcf
 
 
 
b626f76
6a4b741
 
 
 
f1f7ebd
75a89e7
6a4b741
 
 
 
b888bcf
6a4b741
b626f76
b888bcf
6a4b741
 
 
 
 
b888bcf
 
6a4b741
 
 
 
b888bcf
6a4b741
b888bcf
6a4b741
 
 
 
 
 
 
cd34443
 
6a4b741
b888bcf
 
 
 
 
 
 
0df5d5a
6a4b741
b888bcf
6a4b741
b888bcf
 
 
 
 
 
6a4b741
 
b888bcf
 
 
a7104ac
 
6a4b741
 
 
 
 
b888bcf
6a4b741
 
a7104ac
6a4b741
b888bcf
 
 
 
 
 
 
6a4b741
b888bcf
 
 
6a4b741
 
 
 
 
 
 
 
b888bcf
 
 
 
 
 
 
 
 
 
6a4b741
b888bcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import gradio as gr
import torch
from diffusers import StableDiffusionXLPipeline, AutoencoderKL
from huggingface_hub import hf_hub_download
import lora
from time import sleep
import copy
import json

with open("sdxl_loras.json", "r") as file:
    sdxl_loras = [
        (
            item["image"],
            item["title"],
            item["repo"],
            item["trigger_word"],
            item["weights"],
            item["is_compatible"],
        )
        for item in json.load(file)
    ]

saved_names = [
    hf_hub_download(repo_id, filename) for _, _, repo_id, _, filename, _ in sdxl_loras
]

device = "cuda" #replace this to `mps` if on a MacOS Silicon

def update_selection(selected_state: gr.SelectData):
    lora_repo = sdxl_loras[selected_state.index][2]
    instance_prompt = sdxl_loras[selected_state.index][3]
    updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo})"
    return updated_text, instance_prompt, selected_state


vae = AutoencoderKL.from_pretrained(
    "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
)
pipe = StableDiffusionXLPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    vae=vae,
    torch_dtype=torch.float16,
).to("cpu")
original_pipe = copy.deepcopy(pipe)
pipe.to(device)

last_lora = ""
last_merged = False


def run_lora(prompt, negative, weight, selected_state):
    global last_lora, last_merged, pipe
    if not selected_state:
        raise gr.Error("You must select a LoRA")
    repo_name = sdxl_loras[selected_state.index][2]
    weight_name = sdxl_loras[selected_state.index][4]
    full_path_lora = saved_names[selected_state.index]
    cross_attention_kwargs = None
    if last_lora != repo_name:
        if last_merged:
            pipe = copy.deepcopy(original_pipe)
        else:
            pipe.unload_lora_weights()
        is_compatible = sdxl_loras[selected_state.index][5]
        if is_compatible:
            pipe.load_lora_weights(full_path_lora)
            cross_attention_kwargs = {"scale": weight}
        else:
            for weights_file in [full_path_lora]:
                if ";" in weights_file:
                    weights_file, multiplier = weights_file.split(";")
                    multiplier = float(weight)
                else:
                    multiplier = 1.0
                
                multiplier = torch.tensor([multiplier], dtype=torch.float16, device=device)
                lora_model, weights_sd = lora.create_network_from_weights(
                    multiplier,
                    full_path_lora,
                    pipe.vae,
                    pipe.text_encoder,
                    pipe.unet,
                    for_inference=True,
                )
                lora_model.apply_to(pipe.text_encoder, pipe.unet) #is apply too all you need?
            last_merged = True

    image = pipe(
        prompt=prompt,
        negative_prompt=negative,
        num_inference_steps=20,
        guidance_scale=7.5,
        cross_attention_kwargs=cross_attention_kwargs,
    ).images[0]
    last_lora = repo_name
    return image


css = """
#title{text-align: center;margin-bottom: 0.5em}
#title h1{font-size: 3em}
#prompt textarea{width: calc(100% - 160px);border-top-right-radius: 0px;border-bottom-right-radius: 0px;}
#run_button{position:absolute;margin-top: 38px;right: 0;margin-right: 0.8em;border-bottom-left-radius: 0px;
    border-top-left-radius: 0px;}
#gallery{display:flex}
#gallery .grid-wrap{min-height: 100%;}
"""

with gr.Blocks(css=css) as demo:
    title = gr.Markdown("# LoRA the Explorer 🔎", elem_id="title")
    with gr.Row():
        gallery = gr.Gallery(
            value=[(a, b) for a, b, _, _, _, _ in sdxl_loras],
            label="SDXL LoRA Gallery",
            allow_preview=False,
            columns=3,
            elem_id="gallery",
        )
        with gr.Column():
            prompt_title = gr.Markdown(
                value="### Click on a LoRA in the gallery to select it", visible=True
            )
            with gr.Row():
                prompt = gr.Textbox(label="Prompt", elem_id="prompt")
                button = gr.Button("Run", elem_id="run_button")
            result = gr.Image(interactive=False, label="result")
            with gr.Accordion("Advanced options", open=False):
                negative = gr.Textbox(label="Negative Prompt")
                weight = gr.Slider(0, 1, value=1, step=0.1, label="LoRA weight")
    with gr.Column():
        gr.Markdown("Use it with:")
        with gr.Row():
            with gr.Accordion("🧨 diffusers", open=False):
                gr.Markdown("")
            with gr.Accordion("ComfyUI", open=False):
                gr.Markdown("")
            with gr.Accordion("Invoke AI", open=False):
                gr.Markdown("")
            with gr.Accordion("SD.Next (AUTO1111 fork)", open=False):
                gr.Markdown("")
    selected_state = gr.State()
    gallery.select(
        update_selection,
        outputs=[prompt_title, prompt, selected_state],
        queue=False,
        show_progress=False,
    )
    prompt.submit(
        fn=run_lora, inputs=[prompt, negative, weight, selected_state], outputs=result
    )
    button.click(
        fn=run_lora, inputs=[prompt, negative, weight, selected_state], outputs=result
    )


demo.launch()