face-to-all / app.py
multimodalart's picture
Update app.py
bf6d614
raw
history blame
5.37 kB
import gradio as gr
import torch
from diffusers import StableDiffusionXLPipeline, AutoencoderKL
from huggingface_hub import hf_hub_download
import lora
from time import sleep
import copy
import json
with open("sdxl_loras.json", "r") as file:
sdxl_loras = [
(
item["image"],
item["title"],
item["repo"],
item["trigger_word"],
item["weights"],
item["is_compatible"],
)
for item in json.load(file)
]
saved_names = [
hf_hub_download(repo_id, filename) for _, _, repo_id, _, filename, _ in sdxl_loras
]
device = "cuda" #replace this to `mps` if on a MacOS Silicon
def update_selection(selected_state: gr.SelectData):
lora_repo = sdxl_loras[selected_state.index][2]
instance_prompt = sdxl_loras[selected_state.index][3]
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo})"
return updated_text, instance_prompt, selected_state
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
)
pipe = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
vae=vae,
torch_dtype=torch.float16,
).to("cpu")
original_pipe = copy.deepcopy(pipe)
pipe.to(device)
last_lora = ""
last_merged = False
def run_lora(prompt, negative, weight, selected_state):
global last_lora, last_merged, pipe
if not selected_state:
raise gr.Error("You must select a LoRA")
repo_name = sdxl_loras[selected_state.index][2]
weight_name = sdxl_loras[selected_state.index][4]
full_path_lora = saved_names[selected_state.index]
cross_attention_kwargs = None
if last_lora != repo_name:
if last_merged:
pipe = copy.deepcopy(original_pipe)
pipe.to(device)
else:
pipe.unload_lora_weights()
is_compatible = sdxl_loras[selected_state.index][5]
if is_compatible:
pipe.load_lora_weights(full_path_lora)
cross_attention_kwargs = {"scale": weight}
else:
for weights_file in [full_path_lora]:
if ";" in weights_file:
weights_file, multiplier = weights_file.split(";")
multiplier = float(weight)
else:
multiplier = 1.0
multiplier = torch.tensor([multiplier], dtype=torch.float16, device=device)
lora_model, weights_sd = lora.create_network_from_weights(
multiplier,
full_path_lora,
pipe.vae,
pipe.text_encoder,
pipe.unet,
for_inference=True,
)
lora_model.apply_to(pipe.text_encoder, pipe.unet) #is apply too all you need?
last_merged = True
image = pipe(
prompt=prompt,
negative_prompt=negative,
num_inference_steps=20,
guidance_scale=7.5,
cross_attention_kwargs=cross_attention_kwargs,
).images[0]
last_lora = repo_name
return image
css = """
#title{text-align: center;margin-bottom: 0.5em}
#title h1{font-size: 3em}
#prompt textarea{width: calc(100% - 160px);border-top-right-radius: 0px;border-bottom-right-radius: 0px;}
#run_button{position:absolute;margin-top: 38px;right: 0;margin-right: 0.8em;border-bottom-left-radius: 0px;
border-top-left-radius: 0px;}
#gallery{display:flex}
#gallery .grid-wrap{min-height: 100%;}
"""
with gr.Blocks(css=css) as demo:
title = gr.Markdown("# LoRA the Explorer 🔎", elem_id="title")
with gr.Row():
gallery = gr.Gallery(
value=[(a, b) for a, b, _, _, _, _ in sdxl_loras],
label="SDXL LoRA Gallery",
allow_preview=False,
columns=3,
elem_id="gallery",
)
with gr.Column():
prompt_title = gr.Markdown(
value="### Click on a LoRA in the gallery to select it", visible=True
)
with gr.Row():
prompt = gr.Textbox(label="Prompt", elem_id="prompt")
button = gr.Button("Run", elem_id="run_button")
result = gr.Image(interactive=False, label="result")
with gr.Accordion("Advanced options", open=False):
negative = gr.Textbox(label="Negative Prompt")
weight = gr.Slider(0, 1, value=1, step=0.1, label="LoRA weight")
with gr.Column():
gr.Markdown("Use it with:")
with gr.Row():
with gr.Accordion("🧨 diffusers", open=False):
gr.Markdown("")
with gr.Accordion("ComfyUI", open=False):
gr.Markdown("")
with gr.Accordion("Invoke AI", open=False):
gr.Markdown("")
with gr.Accordion("SD.Next (AUTO1111 fork)", open=False):
gr.Markdown("")
selected_state = gr.State()
gallery.select(
update_selection,
outputs=[prompt_title, prompt, selected_state],
queue=False,
show_progress=False,
)
prompt.submit(
fn=run_lora, inputs=[prompt, negative, weight, selected_state], outputs=result
)
button.click(
fn=run_lora, inputs=[prompt, negative, weight, selected_state], outputs=result
)
demo.launch()