Spaces:
Running
on
Zero
Running
on
Zero
# LoRA network module | |
# reference: | |
# https://github.com/microsoft/LoRA/blob/main/loralib/layers.py | |
# https://github.com/cloneofsimo/lora/blob/master/lora_diffusion/lora.py | |
import math | |
import os | |
from typing import Dict, List, Optional, Tuple, Type, Union | |
from diffusers import AutoencoderKL | |
from transformers import CLIPTextModel | |
import numpy as np | |
import torch | |
import re | |
RE_UPDOWN = re.compile(r"(up|down)_blocks_(\d+)_(resnets|upsamplers|downsamplers|attentions)_(\d+)_") | |
RE_UPDOWN = re.compile(r"(up|down)_blocks_(\d+)_(resnets|upsamplers|downsamplers|attentions)_(\d+)_") | |
class LoRAModule(torch.nn.Module): | |
""" | |
replaces forward method of the original Linear, instead of replacing the original Linear module. | |
""" | |
def __init__( | |
self, | |
lora_name, | |
org_module: torch.nn.Module, | |
multiplier=1.0, | |
lora_dim=4, | |
alpha=1, | |
dropout=None, | |
rank_dropout=None, | |
module_dropout=None, | |
): | |
"""if alpha == 0 or None, alpha is rank (no scaling).""" | |
super().__init__() | |
self.lora_name = lora_name | |
if org_module.__class__.__name__ == "Conv2d": | |
in_dim = org_module.in_channels | |
out_dim = org_module.out_channels | |
else: | |
in_dim = org_module.in_features | |
out_dim = org_module.out_features | |
# if limit_rank: | |
# self.lora_dim = min(lora_dim, in_dim, out_dim) | |
# if self.lora_dim != lora_dim: | |
# print(f"{lora_name} dim (rank) is changed to: {self.lora_dim}") | |
# else: | |
self.lora_dim = lora_dim | |
if org_module.__class__.__name__ == "Conv2d": | |
kernel_size = org_module.kernel_size | |
stride = org_module.stride | |
padding = org_module.padding | |
self.lora_down = torch.nn.Conv2d(in_dim, self.lora_dim, kernel_size, stride, padding, bias=False) | |
self.lora_up = torch.nn.Conv2d(self.lora_dim, out_dim, (1, 1), (1, 1), bias=False) | |
else: | |
self.lora_down = torch.nn.Linear(in_dim, self.lora_dim, bias=False) | |
self.lora_up = torch.nn.Linear(self.lora_dim, out_dim, bias=False) | |
if type(alpha) == torch.Tensor: | |
alpha = alpha.detach().float().numpy() # without casting, bf16 causes error | |
alpha = self.lora_dim if alpha is None or alpha == 0 else alpha | |
self.scale = alpha / self.lora_dim | |
self.register_buffer("alpha", torch.tensor(alpha)) # 定数として扱える | |
# same as microsoft's | |
torch.nn.init.kaiming_uniform_(self.lora_down.weight, a=math.sqrt(5)) | |
torch.nn.init.zeros_(self.lora_up.weight) | |
self.multiplier = multiplier | |
self.org_module = org_module # remove in applying | |
self.dropout = dropout | |
self.rank_dropout = rank_dropout | |
self.module_dropout = module_dropout | |
def apply_to(self): | |
self.org_forward = self.org_module.forward | |
self.org_module.forward = self.forward | |
del self.org_module | |
def forward(self, x): | |
org_forwarded = self.org_forward(x) | |
# module dropout | |
if self.module_dropout is not None and self.training: | |
if torch.rand(1) < self.module_dropout: | |
return org_forwarded | |
lx = self.lora_down(x) | |
# normal dropout | |
if self.dropout is not None and self.training: | |
lx = torch.nn.functional.dropout(lx, p=self.dropout) | |
# rank dropout | |
if self.rank_dropout is not None and self.training: | |
mask = torch.rand((lx.size(0), self.lora_dim), device=lx.device) > self.rank_dropout | |
if len(lx.size()) == 3: | |
mask = mask.unsqueeze(1) # for Text Encoder | |
elif len(lx.size()) == 4: | |
mask = mask.unsqueeze(-1).unsqueeze(-1) # for Conv2d | |
lx = lx * mask | |
# scaling for rank dropout: treat as if the rank is changed | |
# maskから計算することも考えられるが、augmentation的な効果を期待してrank_dropoutを用いる | |
scale = self.scale * (1.0 / (1.0 - self.rank_dropout)) # redundant for readability | |
else: | |
scale = self.scale | |
lx = self.lora_up(lx) | |
return org_forwarded + lx * self.multiplier * scale | |
class LoRAInfModule(LoRAModule): | |
def __init__( | |
self, | |
lora_name, | |
org_module: torch.nn.Module, | |
multiplier=1.0, | |
lora_dim=4, | |
alpha=1, | |
**kwargs, | |
): | |
# no dropout for inference | |
super().__init__(lora_name, org_module, multiplier, lora_dim, alpha) | |
self.org_module_ref = [org_module] # 後から参照できるように | |
self.enabled = True | |
# check regional or not by lora_name | |
self.text_encoder = False | |
if lora_name.startswith("lora_te_"): | |
self.regional = False | |
self.use_sub_prompt = True | |
self.text_encoder = True | |
elif "attn2_to_k" in lora_name or "attn2_to_v" in lora_name: | |
self.regional = False | |
self.use_sub_prompt = True | |
elif "time_emb" in lora_name: | |
self.regional = False | |
self.use_sub_prompt = False | |
else: | |
self.regional = True | |
self.use_sub_prompt = False | |
self.network: LoRANetwork = None | |
def set_network(self, network): | |
self.network = network | |
# freezeしてマージする | |
def merge_to(self, sd, dtype, device): | |
# get up/down weight | |
up_weight = sd["lora_up.weight"].to(torch.float).to(device) | |
down_weight = sd["lora_down.weight"].to(torch.float).to(device) | |
# extract weight from org_module | |
org_sd = self.org_module.state_dict() | |
weight = org_sd["weight"].to(torch.float) | |
# merge weight | |
if len(weight.size()) == 2: | |
# linear | |
weight = weight + self.multiplier * (up_weight @ down_weight) * self.scale | |
elif down_weight.size()[2:4] == (1, 1): | |
# conv2d 1x1 | |
weight = ( | |
weight | |
+ self.multiplier | |
* (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3) | |
* self.scale | |
) | |
else: | |
# conv2d 3x3 | |
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3) | |
# print(conved.size(), weight.size(), module.stride, module.padding) | |
weight = weight + self.multiplier * conved * self.scale | |
# set weight to org_module | |
org_sd["weight"] = weight.to(dtype) | |
self.org_module.load_state_dict(org_sd) | |
# 復元できるマージのため、このモジュールのweightを返す | |
def get_weight(self, multiplier=None): | |
if multiplier is None: | |
multiplier = self.multiplier | |
# get up/down weight from module | |
up_weight = self.lora_up.weight.to(torch.float) | |
down_weight = self.lora_down.weight.to(torch.float) | |
# pre-calculated weight | |
if len(down_weight.size()) == 2: | |
# linear | |
weight = self.multiplier * (up_weight @ down_weight) * self.scale | |
elif down_weight.size()[2:4] == (1, 1): | |
# conv2d 1x1 | |
weight = ( | |
self.multiplier | |
* (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3) | |
* self.scale | |
) | |
else: | |
# conv2d 3x3 | |
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3) | |
weight = self.multiplier * conved * self.scale | |
return weight | |
def set_region(self, region): | |
self.region = region | |
self.region_mask = None | |
def default_forward(self, x): | |
# print("default_forward", self.lora_name, x.size()) | |
return self.org_forward(x) + self.lora_up(self.lora_down(x)) * self.multiplier * self.scale | |
def forward(self, x): | |
if not self.enabled: | |
return self.org_forward(x) | |
if self.network is None or self.network.sub_prompt_index is None: | |
return self.default_forward(x) | |
if not self.regional and not self.use_sub_prompt: | |
return self.default_forward(x) | |
if self.regional: | |
return self.regional_forward(x) | |
else: | |
return self.sub_prompt_forward(x) | |
def get_mask_for_x(self, x): | |
# calculate size from shape of x | |
if len(x.size()) == 4: | |
h, w = x.size()[2:4] | |
area = h * w | |
else: | |
area = x.size()[1] | |
mask = self.network.mask_dic[area] | |
if mask is None: | |
raise ValueError(f"mask is None for resolution {area}") | |
if len(x.size()) != 4: | |
mask = torch.reshape(mask, (1, -1, 1)) | |
return mask | |
def regional_forward(self, x): | |
if "attn2_to_out" in self.lora_name: | |
return self.to_out_forward(x) | |
if self.network.mask_dic is None: # sub_prompt_index >= 3 | |
return self.default_forward(x) | |
# apply mask for LoRA result | |
lx = self.lora_up(self.lora_down(x)) * self.multiplier * self.scale | |
mask = self.get_mask_for_x(lx) | |
# print("regional", self.lora_name, self.network.sub_prompt_index, lx.size(), mask.size()) | |
lx = lx * mask | |
x = self.org_forward(x) | |
x = x + lx | |
if "attn2_to_q" in self.lora_name and self.network.is_last_network: | |
x = self.postp_to_q(x) | |
return x | |
def postp_to_q(self, x): | |
# repeat x to num_sub_prompts | |
has_real_uncond = x.size()[0] // self.network.batch_size == 3 | |
qc = self.network.batch_size # uncond | |
qc += self.network.batch_size * self.network.num_sub_prompts # cond | |
if has_real_uncond: | |
qc += self.network.batch_size # real_uncond | |
query = torch.zeros((qc, x.size()[1], x.size()[2]), device=x.device, dtype=x.dtype) | |
query[: self.network.batch_size] = x[: self.network.batch_size] | |
for i in range(self.network.batch_size): | |
qi = self.network.batch_size + i * self.network.num_sub_prompts | |
query[qi : qi + self.network.num_sub_prompts] = x[self.network.batch_size + i] | |
if has_real_uncond: | |
query[-self.network.batch_size :] = x[-self.network.batch_size :] | |
# print("postp_to_q", self.lora_name, x.size(), query.size(), self.network.num_sub_prompts) | |
return query | |
def sub_prompt_forward(self, x): | |
if x.size()[0] == self.network.batch_size: # if uncond in text_encoder, do not apply LoRA | |
return self.org_forward(x) | |
emb_idx = self.network.sub_prompt_index | |
if not self.text_encoder: | |
emb_idx += self.network.batch_size | |
# apply sub prompt of X | |
lx = x[emb_idx :: self.network.num_sub_prompts] | |
lx = self.lora_up(self.lora_down(lx)) * self.multiplier * self.scale | |
# print("sub_prompt_forward", self.lora_name, x.size(), lx.size(), emb_idx) | |
x = self.org_forward(x) | |
x[emb_idx :: self.network.num_sub_prompts] += lx | |
return x | |
def to_out_forward(self, x): | |
# print("to_out_forward", self.lora_name, x.size(), self.network.is_last_network) | |
if self.network.is_last_network: | |
masks = [None] * self.network.num_sub_prompts | |
self.network.shared[self.lora_name] = (None, masks) | |
else: | |
lx, masks = self.network.shared[self.lora_name] | |
# call own LoRA | |
x1 = x[self.network.batch_size + self.network.sub_prompt_index :: self.network.num_sub_prompts] | |
lx1 = self.lora_up(self.lora_down(x1)) * self.multiplier * self.scale | |
if self.network.is_last_network: | |
lx = torch.zeros( | |
(self.network.num_sub_prompts * self.network.batch_size, *lx1.size()[1:]), device=lx1.device, dtype=lx1.dtype | |
) | |
self.network.shared[self.lora_name] = (lx, masks) | |
# print("to_out_forward", lx.size(), lx1.size(), self.network.sub_prompt_index, self.network.num_sub_prompts) | |
lx[self.network.sub_prompt_index :: self.network.num_sub_prompts] += lx1 | |
masks[self.network.sub_prompt_index] = self.get_mask_for_x(lx1) | |
# if not last network, return x and masks | |
x = self.org_forward(x) | |
if not self.network.is_last_network: | |
return x | |
lx, masks = self.network.shared.pop(self.lora_name) | |
# if last network, combine separated x with mask weighted sum | |
has_real_uncond = x.size()[0] // self.network.batch_size == self.network.num_sub_prompts + 2 | |
out = torch.zeros((self.network.batch_size * (3 if has_real_uncond else 2), *x.size()[1:]), device=x.device, dtype=x.dtype) | |
out[: self.network.batch_size] = x[: self.network.batch_size] # uncond | |
if has_real_uncond: | |
out[-self.network.batch_size :] = x[-self.network.batch_size :] # real_uncond | |
# print("to_out_forward", self.lora_name, self.network.sub_prompt_index, self.network.num_sub_prompts) | |
# for i in range(len(masks)): | |
# if masks[i] is None: | |
# masks[i] = torch.zeros_like(masks[-1]) | |
mask = torch.cat(masks) | |
mask_sum = torch.sum(mask, dim=0) + 1e-4 | |
for i in range(self.network.batch_size): | |
# 1枚の画像ごとに処理する | |
lx1 = lx[i * self.network.num_sub_prompts : (i + 1) * self.network.num_sub_prompts] | |
lx1 = lx1 * mask | |
lx1 = torch.sum(lx1, dim=0) | |
xi = self.network.batch_size + i * self.network.num_sub_prompts | |
x1 = x[xi : xi + self.network.num_sub_prompts] | |
x1 = x1 * mask | |
x1 = torch.sum(x1, dim=0) | |
x1 = x1 / mask_sum | |
x1 = x1 + lx1 | |
out[self.network.batch_size + i] = x1 | |
# print("to_out_forward", x.size(), out.size(), has_real_uncond) | |
return out | |
def parse_block_lr_kwargs(nw_kwargs): | |
down_lr_weight = nw_kwargs.get("down_lr_weight", None) | |
mid_lr_weight = nw_kwargs.get("mid_lr_weight", None) | |
up_lr_weight = nw_kwargs.get("up_lr_weight", None) | |
# 以上のいずれにも設定がない場合は無効としてNoneを返す | |
if down_lr_weight is None and mid_lr_weight is None and up_lr_weight is None: | |
return None, None, None | |
# extract learning rate weight for each block | |
if down_lr_weight is not None: | |
# if some parameters are not set, use zero | |
if "," in down_lr_weight: | |
down_lr_weight = [(float(s) if s else 0.0) for s in down_lr_weight.split(",")] | |
if mid_lr_weight is not None: | |
mid_lr_weight = float(mid_lr_weight) | |
if up_lr_weight is not None: | |
if "," in up_lr_weight: | |
up_lr_weight = [(float(s) if s else 0.0) for s in up_lr_weight.split(",")] | |
down_lr_weight, mid_lr_weight, up_lr_weight = get_block_lr_weight( | |
down_lr_weight, mid_lr_weight, up_lr_weight, float(nw_kwargs.get("block_lr_zero_threshold", 0.0)) | |
) | |
return down_lr_weight, mid_lr_weight, up_lr_weight | |
def create_network( | |
multiplier: float, | |
network_dim: Optional[int], | |
network_alpha: Optional[float], | |
vae: AutoencoderKL, | |
text_encoder: Union[CLIPTextModel, List[CLIPTextModel]], | |
unet, | |
neuron_dropout: Optional[float] = None, | |
**kwargs, | |
): | |
if network_dim is None: | |
network_dim = 4 # default | |
if network_alpha is None: | |
network_alpha = 1.0 | |
# extract dim/alpha for conv2d, and block dim | |
conv_dim = kwargs.get("conv_dim", None) | |
conv_alpha = kwargs.get("conv_alpha", None) | |
if conv_dim is not None: | |
conv_dim = int(conv_dim) | |
if conv_alpha is None: | |
conv_alpha = 1.0 | |
else: | |
conv_alpha = float(conv_alpha) | |
# block dim/alpha/lr | |
block_dims = kwargs.get("block_dims", None) | |
down_lr_weight, mid_lr_weight, up_lr_weight = parse_block_lr_kwargs(kwargs) | |
# 以上のいずれかに指定があればblockごとのdim(rank)を有効にする | |
if block_dims is not None or down_lr_weight is not None or mid_lr_weight is not None or up_lr_weight is not None: | |
block_alphas = kwargs.get("block_alphas", None) | |
conv_block_dims = kwargs.get("conv_block_dims", None) | |
conv_block_alphas = kwargs.get("conv_block_alphas", None) | |
block_dims, block_alphas, conv_block_dims, conv_block_alphas = get_block_dims_and_alphas( | |
block_dims, block_alphas, network_dim, network_alpha, conv_block_dims, conv_block_alphas, conv_dim, conv_alpha | |
) | |
# remove block dim/alpha without learning rate | |
block_dims, block_alphas, conv_block_dims, conv_block_alphas = remove_block_dims_and_alphas( | |
block_dims, block_alphas, conv_block_dims, conv_block_alphas, down_lr_weight, mid_lr_weight, up_lr_weight | |
) | |
else: | |
block_alphas = None | |
conv_block_dims = None | |
conv_block_alphas = None | |
# rank/module dropout | |
rank_dropout = kwargs.get("rank_dropout", None) | |
if rank_dropout is not None: | |
rank_dropout = float(rank_dropout) | |
module_dropout = kwargs.get("module_dropout", None) | |
if module_dropout is not None: | |
module_dropout = float(module_dropout) | |
# すごく引数が多いな ( ^ω^)・・・ | |
network = LoRANetwork( | |
text_encoder, | |
unet, | |
multiplier=multiplier, | |
lora_dim=network_dim, | |
alpha=network_alpha, | |
dropout=neuron_dropout, | |
rank_dropout=rank_dropout, | |
module_dropout=module_dropout, | |
conv_lora_dim=conv_dim, | |
conv_alpha=conv_alpha, | |
block_dims=block_dims, | |
block_alphas=block_alphas, | |
conv_block_dims=conv_block_dims, | |
conv_block_alphas=conv_block_alphas, | |
varbose=True, | |
) | |
if up_lr_weight is not None or mid_lr_weight is not None or down_lr_weight is not None: | |
network.set_block_lr_weight(up_lr_weight, mid_lr_weight, down_lr_weight) | |
return network | |
# このメソッドは外部から呼び出される可能性を考慮しておく | |
# network_dim, network_alpha にはデフォルト値が入っている。 | |
# block_dims, block_alphas は両方ともNoneまたは両方とも値が入っている | |
# conv_dim, conv_alpha は両方ともNoneまたは両方とも値が入っている | |
def get_block_dims_and_alphas( | |
block_dims, block_alphas, network_dim, network_alpha, conv_block_dims, conv_block_alphas, conv_dim, conv_alpha | |
): | |
num_total_blocks = LoRANetwork.NUM_OF_BLOCKS * 2 + 1 | |
def parse_ints(s): | |
return [int(i) for i in s.split(",")] | |
def parse_floats(s): | |
return [float(i) for i in s.split(",")] | |
# block_dimsとblock_alphasをパースする。必ず値が入る | |
if block_dims is not None: | |
block_dims = parse_ints(block_dims) | |
assert ( | |
len(block_dims) == num_total_blocks | |
), f"block_dims must have {num_total_blocks} elements / block_dimsは{num_total_blocks}個指定してください" | |
else: | |
print(f"block_dims is not specified. all dims are set to {network_dim} / block_dimsが指定されていません。すべてのdimは{network_dim}になります") | |
block_dims = [network_dim] * num_total_blocks | |
if block_alphas is not None: | |
block_alphas = parse_floats(block_alphas) | |
assert ( | |
len(block_alphas) == num_total_blocks | |
), f"block_alphas must have {num_total_blocks} elements / block_alphasは{num_total_blocks}個指定してください" | |
else: | |
print( | |
f"block_alphas is not specified. all alphas are set to {network_alpha} / block_alphasが指定されていません。すべてのalphaは{network_alpha}になります" | |
) | |
block_alphas = [network_alpha] * num_total_blocks | |
# conv_block_dimsとconv_block_alphasを、指定がある場合のみパースする。指定がなければconv_dimとconv_alphaを使う | |
if conv_block_dims is not None: | |
conv_block_dims = parse_ints(conv_block_dims) | |
assert ( | |
len(conv_block_dims) == num_total_blocks | |
), f"conv_block_dims must have {num_total_blocks} elements / conv_block_dimsは{num_total_blocks}個指定してください" | |
if conv_block_alphas is not None: | |
conv_block_alphas = parse_floats(conv_block_alphas) | |
assert ( | |
len(conv_block_alphas) == num_total_blocks | |
), f"conv_block_alphas must have {num_total_blocks} elements / conv_block_alphasは{num_total_blocks}個指定してください" | |
else: | |
if conv_alpha is None: | |
conv_alpha = 1.0 | |
print( | |
f"conv_block_alphas is not specified. all alphas are set to {conv_alpha} / conv_block_alphasが指定されていません。すべてのalphaは{conv_alpha}になります" | |
) | |
conv_block_alphas = [conv_alpha] * num_total_blocks | |
else: | |
if conv_dim is not None: | |
print( | |
f"conv_dim/alpha for all blocks are set to {conv_dim} and {conv_alpha} / すべてのブロックのconv_dimとalphaは{conv_dim}および{conv_alpha}になります" | |
) | |
conv_block_dims = [conv_dim] * num_total_blocks | |
conv_block_alphas = [conv_alpha] * num_total_blocks | |
else: | |
conv_block_dims = None | |
conv_block_alphas = None | |
return block_dims, block_alphas, conv_block_dims, conv_block_alphas | |
# 層別学習率用に層ごとの学習率に対する倍率を定義する、外部から呼び出される可能性を考慮しておく | |
def get_block_lr_weight( | |
down_lr_weight, mid_lr_weight, up_lr_weight, zero_threshold | |
) -> Tuple[List[float], List[float], List[float]]: | |
# パラメータ未指定時は何もせず、今までと同じ動作とする | |
if up_lr_weight is None and mid_lr_weight is None and down_lr_weight is None: | |
return None, None, None | |
max_len = LoRANetwork.NUM_OF_BLOCKS # フルモデル相当でのup,downの層の数 | |
def get_list(name_with_suffix) -> List[float]: | |
import math | |
tokens = name_with_suffix.split("+") | |
name = tokens[0] | |
base_lr = float(tokens[1]) if len(tokens) > 1 else 0.0 | |
if name == "cosine": | |
return [math.sin(math.pi * (i / (max_len - 1)) / 2) + base_lr for i in reversed(range(max_len))] | |
elif name == "sine": | |
return [math.sin(math.pi * (i / (max_len - 1)) / 2) + base_lr for i in range(max_len)] | |
elif name == "linear": | |
return [i / (max_len - 1) + base_lr for i in range(max_len)] | |
elif name == "reverse_linear": | |
return [i / (max_len - 1) + base_lr for i in reversed(range(max_len))] | |
elif name == "zeros": | |
return [0.0 + base_lr] * max_len | |
else: | |
print( | |
"Unknown lr_weight argument %s is used. Valid arguments: / 不明なlr_weightの引数 %s が使われました。有効な引数:\n\tcosine, sine, linear, reverse_linear, zeros" | |
% (name) | |
) | |
return None | |
if type(down_lr_weight) == str: | |
down_lr_weight = get_list(down_lr_weight) | |
if type(up_lr_weight) == str: | |
up_lr_weight = get_list(up_lr_weight) | |
if (up_lr_weight != None and len(up_lr_weight) > max_len) or (down_lr_weight != None and len(down_lr_weight) > max_len): | |
print("down_weight or up_weight is too long. Parameters after %d-th are ignored." % max_len) | |
print("down_weightもしくはup_weightが長すぎます。%d個目以降のパラメータは無視されます。" % max_len) | |
up_lr_weight = up_lr_weight[:max_len] | |
down_lr_weight = down_lr_weight[:max_len] | |
if (up_lr_weight != None and len(up_lr_weight) < max_len) or (down_lr_weight != None and len(down_lr_weight) < max_len): | |
print("down_weight or up_weight is too short. Parameters after %d-th are filled with 1." % max_len) | |
print("down_weightもしくはup_weightが短すぎます。%d個目までの不足したパラメータは1で補われます。" % max_len) | |
if down_lr_weight != None and len(down_lr_weight) < max_len: | |
down_lr_weight = down_lr_weight + [1.0] * (max_len - len(down_lr_weight)) | |
if up_lr_weight != None and len(up_lr_weight) < max_len: | |
up_lr_weight = up_lr_weight + [1.0] * (max_len - len(up_lr_weight)) | |
if (up_lr_weight != None) or (mid_lr_weight != None) or (down_lr_weight != None): | |
print("apply block learning rate / 階層別学習率を適用します。") | |
if down_lr_weight != None: | |
down_lr_weight = [w if w > zero_threshold else 0 for w in down_lr_weight] | |
print("down_lr_weight (shallower -> deeper, 浅い層->深い層):", down_lr_weight) | |
else: | |
print("down_lr_weight: all 1.0, すべて1.0") | |
if mid_lr_weight != None: | |
mid_lr_weight = mid_lr_weight if mid_lr_weight > zero_threshold else 0 | |
print("mid_lr_weight:", mid_lr_weight) | |
else: | |
print("mid_lr_weight: 1.0") | |
if up_lr_weight != None: | |
up_lr_weight = [w if w > zero_threshold else 0 for w in up_lr_weight] | |
print("up_lr_weight (deeper -> shallower, 深い層->浅い層):", up_lr_weight) | |
else: | |
print("up_lr_weight: all 1.0, すべて1.0") | |
return down_lr_weight, mid_lr_weight, up_lr_weight | |
# lr_weightが0のblockをblock_dimsから除外する、外部から呼び出す可能性を考慮しておく | |
def remove_block_dims_and_alphas( | |
block_dims, block_alphas, conv_block_dims, conv_block_alphas, down_lr_weight, mid_lr_weight, up_lr_weight | |
): | |
# set 0 to block dim without learning rate to remove the block | |
if down_lr_weight != None: | |
for i, lr in enumerate(down_lr_weight): | |
if lr == 0: | |
block_dims[i] = 0 | |
if conv_block_dims is not None: | |
conv_block_dims[i] = 0 | |
if mid_lr_weight != None: | |
if mid_lr_weight == 0: | |
block_dims[LoRANetwork.NUM_OF_BLOCKS] = 0 | |
if conv_block_dims is not None: | |
conv_block_dims[LoRANetwork.NUM_OF_BLOCKS] = 0 | |
if up_lr_weight != None: | |
for i, lr in enumerate(up_lr_weight): | |
if lr == 0: | |
block_dims[LoRANetwork.NUM_OF_BLOCKS + 1 + i] = 0 | |
if conv_block_dims is not None: | |
conv_block_dims[LoRANetwork.NUM_OF_BLOCKS + 1 + i] = 0 | |
return block_dims, block_alphas, conv_block_dims, conv_block_alphas | |
# 外部から呼び出す可能性を考慮しておく | |
def get_block_index(lora_name: str) -> int: | |
block_idx = -1 # invalid lora name | |
m = RE_UPDOWN.search(lora_name) | |
if m: | |
g = m.groups() | |
i = int(g[1]) | |
j = int(g[3]) | |
if g[2] == "resnets": | |
idx = 3 * i + j | |
elif g[2] == "attentions": | |
idx = 3 * i + j | |
elif g[2] == "upsamplers" or g[2] == "downsamplers": | |
idx = 3 * i + 2 | |
if g[0] == "down": | |
block_idx = 1 + idx # 0に該当するLoRAは存在しない | |
elif g[0] == "up": | |
block_idx = LoRANetwork.NUM_OF_BLOCKS + 1 + idx | |
elif "mid_block_" in lora_name: | |
block_idx = LoRANetwork.NUM_OF_BLOCKS # idx=12 | |
return block_idx | |
# Create network from weights for inference, weights are not loaded here (because can be merged) | |
def create_network_from_weights(multiplier, file, vae, text_encoder, unet, weights_sd=None, for_inference=False, **kwargs): | |
if weights_sd is None: | |
if os.path.splitext(file)[1] == ".safetensors": | |
from safetensors.torch import load_file, safe_open | |
weights_sd = load_file(file) | |
else: | |
weights_sd = torch.load(file, map_location="cpu") | |
# get dim/alpha mapping | |
modules_dim = {} | |
modules_alpha = {} | |
for key, value in weights_sd.items(): | |
if "." not in key: | |
continue | |
lora_name = key.split(".")[0] | |
if "alpha" in key: | |
modules_alpha[lora_name] = value | |
elif "lora_down" in key: | |
dim = value.size()[0] | |
modules_dim[lora_name] = dim | |
# print(lora_name, value.size(), dim) | |
# support old LoRA without alpha | |
for key in modules_dim.keys(): | |
if key not in modules_alpha: | |
modules_alpha[key] = modules_dim[key] | |
module_class = LoRAInfModule if for_inference else LoRAModule | |
network = LoRANetwork( | |
text_encoder, unet, multiplier=multiplier, modules_dim=modules_dim, modules_alpha=modules_alpha, module_class=module_class | |
) | |
# block lr | |
down_lr_weight, mid_lr_weight, up_lr_weight = parse_block_lr_kwargs(kwargs) | |
if up_lr_weight is not None or mid_lr_weight is not None or down_lr_weight is not None: | |
network.set_block_lr_weight(up_lr_weight, mid_lr_weight, down_lr_weight) | |
return network, weights_sd | |
class LoRANetwork(torch.nn.Module): | |
NUM_OF_BLOCKS = 12 # フルモデル相当でのup,downの層の数 | |
UNET_TARGET_REPLACE_MODULE = ["Transformer2DModel"] | |
UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 = ["ResnetBlock2D", "Downsample2D", "Upsample2D"] | |
TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPMLP"] | |
LORA_PREFIX_UNET = "lora_unet" | |
LORA_PREFIX_TEXT_ENCODER = "lora_te" | |
# SDXL: must starts with LORA_PREFIX_TEXT_ENCODER | |
LORA_PREFIX_TEXT_ENCODER1 = "lora_te1" | |
LORA_PREFIX_TEXT_ENCODER2 = "lora_te2" | |
def __init__( | |
self, | |
text_encoder: Union[List[CLIPTextModel], CLIPTextModel], | |
unet, | |
multiplier: float = 1.0, | |
lora_dim: int = 4, | |
alpha: float = 1, | |
dropout: Optional[float] = None, | |
rank_dropout: Optional[float] = None, | |
module_dropout: Optional[float] = None, | |
conv_lora_dim: Optional[int] = None, | |
conv_alpha: Optional[float] = None, | |
block_dims: Optional[List[int]] = None, | |
block_alphas: Optional[List[float]] = None, | |
conv_block_dims: Optional[List[int]] = None, | |
conv_block_alphas: Optional[List[float]] = None, | |
modules_dim: Optional[Dict[str, int]] = None, | |
modules_alpha: Optional[Dict[str, int]] = None, | |
module_class: Type[object] = LoRAModule, | |
varbose: Optional[bool] = False, | |
) -> None: | |
""" | |
LoRA network: すごく引数が多いが、パターンは以下の通り | |
1. lora_dimとalphaを指定 | |
2. lora_dim、alpha、conv_lora_dim、conv_alphaを指定 | |
3. block_dimsとblock_alphasを指定 : Conv2d3x3には適用しない | |
4. block_dims、block_alphas、conv_block_dims、conv_block_alphasを指定 : Conv2d3x3にも適用する | |
5. modules_dimとmodules_alphaを指定 (推論用) | |
""" | |
super().__init__() | |
self.multiplier = multiplier | |
self.lora_dim = lora_dim | |
self.alpha = alpha | |
self.conv_lora_dim = conv_lora_dim | |
self.conv_alpha = conv_alpha | |
self.dropout = dropout | |
self.rank_dropout = rank_dropout | |
self.module_dropout = module_dropout | |
if modules_dim is not None: | |
print(f"create LoRA network from weights") | |
elif block_dims is not None: | |
print(f"create LoRA network from block_dims") | |
print(f"neuron dropout: p={self.dropout}, rank dropout: p={self.rank_dropout}, module dropout: p={self.module_dropout}") | |
print(f"block_dims: {block_dims}") | |
print(f"block_alphas: {block_alphas}") | |
if conv_block_dims is not None: | |
print(f"conv_block_dims: {conv_block_dims}") | |
print(f"conv_block_alphas: {conv_block_alphas}") | |
else: | |
print(f"create LoRA network. base dim (rank): {lora_dim}, alpha: {alpha}") | |
print(f"neuron dropout: p={self.dropout}, rank dropout: p={self.rank_dropout}, module dropout: p={self.module_dropout}") | |
if self.conv_lora_dim is not None: | |
print(f"apply LoRA to Conv2d with kernel size (3,3). dim (rank): {self.conv_lora_dim}, alpha: {self.conv_alpha}") | |
# create module instances | |
def create_modules( | |
is_unet: bool, | |
text_encoder_idx: Optional[int], # None, 1, 2 | |
root_module: torch.nn.Module, | |
target_replace_modules: List[torch.nn.Module], | |
) -> List[LoRAModule]: | |
prefix = ( | |
self.LORA_PREFIX_UNET | |
if is_unet | |
else ( | |
self.LORA_PREFIX_TEXT_ENCODER | |
if text_encoder_idx is None | |
else (self.LORA_PREFIX_TEXT_ENCODER1 if text_encoder_idx == 1 else self.LORA_PREFIX_TEXT_ENCODER2) | |
) | |
) | |
loras = [] | |
skipped = [] | |
for name, module in root_module.named_modules(): | |
if module.__class__.__name__ in target_replace_modules: | |
for child_name, child_module in module.named_modules(): | |
is_linear = child_module.__class__.__name__ == "Linear" | |
is_conv2d = child_module.__class__.__name__ == "Conv2d" | |
is_conv2d_1x1 = is_conv2d and child_module.kernel_size == (1, 1) | |
if is_linear or is_conv2d: | |
lora_name = prefix + "." + name + "." + child_name | |
lora_name = lora_name.replace(".", "_") | |
dim = None | |
alpha = None | |
if modules_dim is not None: | |
# モジュール指定あり | |
if lora_name in modules_dim: | |
dim = modules_dim[lora_name] | |
alpha = modules_alpha[lora_name] | |
elif is_unet and block_dims is not None: | |
# U-Netでblock_dims指定あり | |
block_idx = get_block_index(lora_name) | |
if is_linear or is_conv2d_1x1: | |
dim = block_dims[block_idx] | |
alpha = block_alphas[block_idx] | |
elif conv_block_dims is not None: | |
dim = conv_block_dims[block_idx] | |
alpha = conv_block_alphas[block_idx] | |
else: | |
# 通常、すべて対象とする | |
if is_linear or is_conv2d_1x1: | |
dim = self.lora_dim | |
alpha = self.alpha | |
elif self.conv_lora_dim is not None: | |
dim = self.conv_lora_dim | |
alpha = self.conv_alpha | |
if dim is None or dim == 0: | |
# skipした情報を出力 | |
if is_linear or is_conv2d_1x1 or (self.conv_lora_dim is not None or conv_block_dims is not None): | |
skipped.append(lora_name) | |
continue | |
lora = module_class( | |
lora_name, | |
child_module, | |
self.multiplier, | |
dim, | |
alpha, | |
dropout=dropout, | |
rank_dropout=rank_dropout, | |
module_dropout=module_dropout, | |
) | |
loras.append(lora) | |
return loras, skipped | |
text_encoders = text_encoder if type(text_encoder) == list else [text_encoder] | |
print(text_encoders) | |
# create LoRA for text encoder | |
# 毎回すべてのモジュールを作るのは無駄なので要検討 | |
self.text_encoder_loras = [] | |
skipped_te = [] | |
for i, text_encoder in enumerate(text_encoders): | |
if len(text_encoders) > 1: | |
index = i + 1 | |
print(f"create LoRA for Text Encoder {index}:") | |
else: | |
index = None | |
print(f"create LoRA for Text Encoder:") | |
print(text_encoder) | |
text_encoder_loras, skipped = create_modules(False, index, text_encoder, LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE) | |
self.text_encoder_loras.extend(text_encoder_loras) | |
skipped_te += skipped | |
print(f"create LoRA for Text Encoder: {len(self.text_encoder_loras)} modules.") | |
# extend U-Net target modules if conv2d 3x3 is enabled, or load from weights | |
target_modules = LoRANetwork.UNET_TARGET_REPLACE_MODULE | |
if modules_dim is not None or self.conv_lora_dim is not None or conv_block_dims is not None: | |
target_modules += LoRANetwork.UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 | |
self.unet_loras, skipped_un = create_modules(True, None, unet, target_modules) | |
print(f"create LoRA for U-Net: {len(self.unet_loras)} modules.") | |
skipped = skipped_te + skipped_un | |
if varbose and len(skipped) > 0: | |
print( | |
f"because block_lr_weight is 0 or dim (rank) is 0, {len(skipped)} LoRA modules are skipped / block_lr_weightまたはdim (rank)が0の為、次の{len(skipped)}個のLoRAモジュールはスキップされます:" | |
) | |
for name in skipped: | |
print(f"\t{name}") | |
self.up_lr_weight: List[float] = None | |
self.down_lr_weight: List[float] = None | |
self.mid_lr_weight: float = None | |
self.block_lr = False | |
# assertion | |
names = set() | |
for lora in self.text_encoder_loras + self.unet_loras: | |
assert lora.lora_name not in names, f"duplicated lora name: {lora.lora_name}" | |
names.add(lora.lora_name) | |
def set_multiplier(self, multiplier): | |
self.multiplier = multiplier | |
for lora in self.text_encoder_loras + self.unet_loras: | |
lora.multiplier = self.multiplier | |
def load_weights(self, file): | |
if os.path.splitext(file)[1] == ".safetensors": | |
from safetensors.torch import load_file | |
weights_sd = load_file(file) | |
else: | |
weights_sd = torch.load(file, map_location="cpu") | |
info = self.load_state_dict(weights_sd, False) | |
return info | |
def apply_to(self, text_encoder, unet, apply_text_encoder=True, apply_unet=True): | |
if apply_text_encoder: | |
print("enable LoRA for text encoder") | |
else: | |
self.text_encoder_loras = [] | |
if apply_unet: | |
print("enable LoRA for U-Net") | |
else: | |
self.unet_loras = [] | |
for lora in self.text_encoder_loras + self.unet_loras: | |
lora.apply_to() | |
self.add_module(lora.lora_name, lora) | |
# マージできるかどうかを返す | |
def is_mergeable(self): | |
return True | |
# TODO refactor to common function with apply_to | |
def merge_to(self, text_encoder, unet, weights_sd, dtype, device): | |
apply_text_encoder = apply_unet = False | |
for key in weights_sd.keys(): | |
if key.startswith(LoRANetwork.LORA_PREFIX_TEXT_ENCODER): | |
apply_text_encoder = True | |
elif key.startswith(LoRANetwork.LORA_PREFIX_UNET): | |
apply_unet = True | |
if apply_text_encoder: | |
print("enable LoRA for text encoder") | |
else: | |
self.text_encoder_loras = [] | |
if apply_unet: | |
print("enable LoRA for U-Net") | |
else: | |
self.unet_loras = [] | |
for lora in self.text_encoder_loras + self.unet_loras: | |
sd_for_lora = {} | |
for key in weights_sd.keys(): | |
if key.startswith(lora.lora_name): | |
sd_for_lora[key[len(lora.lora_name) + 1 :]] = weights_sd[key] | |
lora.merge_to(sd_for_lora, dtype, device) | |
print(f"weights are merged") | |
# 層別学習率用に層ごとの学習率に対する倍率を定義する 引数の順番が逆だがとりあえず気にしない | |
def set_block_lr_weight( | |
self, | |
up_lr_weight: List[float] = None, | |
mid_lr_weight: float = None, | |
down_lr_weight: List[float] = None, | |
): | |
self.block_lr = True | |
self.down_lr_weight = down_lr_weight | |
self.mid_lr_weight = mid_lr_weight | |
self.up_lr_weight = up_lr_weight | |
def get_lr_weight(self, lora: LoRAModule) -> float: | |
lr_weight = 1.0 | |
block_idx = get_block_index(lora.lora_name) | |
if block_idx < 0: | |
return lr_weight | |
if block_idx < LoRANetwork.NUM_OF_BLOCKS: | |
if self.down_lr_weight != None: | |
lr_weight = self.down_lr_weight[block_idx] | |
elif block_idx == LoRANetwork.NUM_OF_BLOCKS: | |
if self.mid_lr_weight != None: | |
lr_weight = self.mid_lr_weight | |
elif block_idx > LoRANetwork.NUM_OF_BLOCKS: | |
if self.up_lr_weight != None: | |
lr_weight = self.up_lr_weight[block_idx - LoRANetwork.NUM_OF_BLOCKS - 1] | |
return lr_weight | |
# 二つのText Encoderに別々の学習率を設定できるようにするといいかも | |
def prepare_optimizer_params(self, text_encoder_lr, unet_lr, default_lr): | |
self.requires_grad_(True) | |
all_params = [] | |
def enumerate_params(loras): | |
params = [] | |
for lora in loras: | |
params.extend(lora.parameters()) | |
return params | |
if self.text_encoder_loras: | |
param_data = {"params": enumerate_params(self.text_encoder_loras)} | |
if text_encoder_lr is not None: | |
param_data["lr"] = text_encoder_lr | |
all_params.append(param_data) | |
if self.unet_loras: | |
if self.block_lr: | |
# 学習率のグラフをblockごとにしたいので、blockごとにloraを分類 | |
block_idx_to_lora = {} | |
for lora in self.unet_loras: | |
idx = get_block_index(lora.lora_name) | |
if idx not in block_idx_to_lora: | |
block_idx_to_lora[idx] = [] | |
block_idx_to_lora[idx].append(lora) | |
# blockごとにパラメータを設定する | |
for idx, block_loras in block_idx_to_lora.items(): | |
param_data = {"params": enumerate_params(block_loras)} | |
if unet_lr is not None: | |
param_data["lr"] = unet_lr * self.get_lr_weight(block_loras[0]) | |
elif default_lr is not None: | |
param_data["lr"] = default_lr * self.get_lr_weight(block_loras[0]) | |
if ("lr" in param_data) and (param_data["lr"] == 0): | |
continue | |
all_params.append(param_data) | |
else: | |
param_data = {"params": enumerate_params(self.unet_loras)} | |
if unet_lr is not None: | |
param_data["lr"] = unet_lr | |
all_params.append(param_data) | |
return all_params | |
def enable_gradient_checkpointing(self): | |
# not supported | |
pass | |
def prepare_grad_etc(self, text_encoder, unet): | |
self.requires_grad_(True) | |
def on_epoch_start(self, text_encoder, unet): | |
self.train() | |
def get_trainable_params(self): | |
return self.parameters() | |
def save_weights(self, file, dtype, metadata): | |
if metadata is not None and len(metadata) == 0: | |
metadata = None | |
state_dict = self.state_dict() | |
if dtype is not None: | |
for key in list(state_dict.keys()): | |
v = state_dict[key] | |
v = v.detach().clone().to("cpu").to(dtype) | |
state_dict[key] = v | |
if os.path.splitext(file)[1] == ".safetensors": | |
from safetensors.torch import save_file | |
from library import train_util | |
# Precalculate model hashes to save time on indexing | |
if metadata is None: | |
metadata = {} | |
model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(state_dict, metadata) | |
metadata["sshs_model_hash"] = model_hash | |
metadata["sshs_legacy_hash"] = legacy_hash | |
save_file(state_dict, file, metadata) | |
else: | |
torch.save(state_dict, file) | |
# mask is a tensor with values from 0 to 1 | |
def set_region(self, sub_prompt_index, is_last_network, mask): | |
if mask.max() == 0: | |
mask = torch.ones_like(mask) | |
self.mask = mask | |
self.sub_prompt_index = sub_prompt_index | |
self.is_last_network = is_last_network | |
for lora in self.text_encoder_loras + self.unet_loras: | |
lora.set_network(self) | |
def set_current_generation(self, batch_size, num_sub_prompts, width, height, shared): | |
self.batch_size = batch_size | |
self.num_sub_prompts = num_sub_prompts | |
self.current_size = (height, width) | |
self.shared = shared | |
# create masks | |
mask = self.mask | |
mask_dic = {} | |
mask = mask.unsqueeze(0).unsqueeze(1) # b(1),c(1),h,w | |
ref_weight = self.text_encoder_loras[0].lora_down.weight if self.text_encoder_loras else self.unet_loras[0].lora_down.weight | |
dtype = ref_weight.dtype | |
device = ref_weight.device | |
def resize_add(mh, mw): | |
# print(mh, mw, mh * mw) | |
m = torch.nn.functional.interpolate(mask, (mh, mw), mode="bilinear") # doesn't work in bf16 | |
m = m.to(device, dtype=dtype) | |
mask_dic[mh * mw] = m | |
h = height // 8 | |
w = width // 8 | |
for _ in range(4): | |
resize_add(h, w) | |
if h % 2 == 1 or w % 2 == 1: # add extra shape if h/w is not divisible by 2 | |
resize_add(h + h % 2, w + w % 2) | |
h = (h + 1) // 2 | |
w = (w + 1) // 2 | |
self.mask_dic = mask_dic | |
def backup_weights(self): | |
# 重みのバックアップを行う | |
loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras | |
for lora in loras: | |
org_module = lora.org_module_ref[0] | |
if not hasattr(org_module, "_lora_org_weight"): | |
sd = org_module.state_dict() | |
org_module._lora_org_weight = sd["weight"].detach().clone() | |
org_module._lora_restored = True | |
def restore_weights(self): | |
# 重みのリストアを行う | |
loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras | |
for lora in loras: | |
org_module = lora.org_module_ref[0] | |
if not org_module._lora_restored: | |
sd = org_module.state_dict() | |
sd["weight"] = org_module._lora_org_weight | |
org_module.load_state_dict(sd) | |
org_module._lora_restored = True | |
def pre_calculation(self): | |
# 事前計算を行う | |
loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras | |
for lora in loras: | |
org_module = lora.org_module_ref[0] | |
sd = org_module.state_dict() | |
org_weight = sd["weight"] | |
lora_weight = lora.get_weight().to(org_weight.device, dtype=org_weight.dtype) | |
sd["weight"] = org_weight + lora_weight | |
assert sd["weight"].shape == org_weight.shape | |
org_module.load_state_dict(sd) | |
org_module._lora_restored = False | |
lora.enabled = False | |
def apply_max_norm_regularization(self, max_norm_value, device): | |
downkeys = [] | |
upkeys = [] | |
alphakeys = [] | |
norms = [] | |
keys_scaled = 0 | |
state_dict = self.state_dict() | |
for key in state_dict.keys(): | |
if "lora_down" in key and "weight" in key: | |
downkeys.append(key) | |
upkeys.append(key.replace("lora_down", "lora_up")) | |
alphakeys.append(key.replace("lora_down.weight", "alpha")) | |
for i in range(len(downkeys)): | |
down = state_dict[downkeys[i]].to(device) | |
up = state_dict[upkeys[i]].to(device) | |
alpha = state_dict[alphakeys[i]].to(device) | |
dim = down.shape[0] | |
scale = alpha / dim | |
if up.shape[2:] == (1, 1) and down.shape[2:] == (1, 1): | |
updown = (up.squeeze(2).squeeze(2) @ down.squeeze(2).squeeze(2)).unsqueeze(2).unsqueeze(3) | |
elif up.shape[2:] == (3, 3) or down.shape[2:] == (3, 3): | |
updown = torch.nn.functional.conv2d(down.permute(1, 0, 2, 3), up).permute(1, 0, 2, 3) | |
else: | |
updown = up @ down | |
updown *= scale | |
norm = updown.norm().clamp(min=max_norm_value / 2) | |
desired = torch.clamp(norm, max=max_norm_value) | |
ratio = desired.cpu() / norm.cpu() | |
sqrt_ratio = ratio**0.5 | |
if ratio != 1: | |
keys_scaled += 1 | |
state_dict[upkeys[i]] *= sqrt_ratio | |
state_dict[downkeys[i]] *= sqrt_ratio | |
scalednorm = updown.norm() * ratio | |
norms.append(scalednorm.item()) | |
return keys_scaled, sum(norms) / len(norms), max(norms) |