multimodalart HF staff commited on
Commit
f5f53dc
1 Parent(s): 9126c78

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -3
app.py CHANGED
@@ -27,6 +27,8 @@ from insightface.app import FaceAnalysis
27
  from pipeline_stable_diffusion_xl_instantid_img2img import StableDiffusionXLInstantIDImg2ImgPipeline, draw_kps
28
  from controlnet_aux import ZoeDetector
29
 
 
 
30
  with open("sdxl_loras.json", "r") as file:
31
  data = json.load(file)
32
  sdxl_loras_raw = [
@@ -107,6 +109,9 @@ pipe = StableDiffusionXLInstantIDImg2ImgPipeline.from_pretrained("rubbrband/albe
107
  vae=vae,
108
  controlnet=[identitynet, zoedepthnet],
109
  torch_dtype=torch.float16)
 
 
 
110
  pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True)
111
  pipe.load_ip_adapter_instantid(face_adapter)
112
  pipe.set_ip_adapter_scale(0.8)
@@ -268,10 +273,14 @@ def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_stre
268
  pipe.unload_textual_inversion()
269
  pipe.load_textual_inversion(state_dict_embedding["text_encoders_0"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)
270
  pipe.load_textual_inversion(state_dict_embedding["text_encoders_1"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2)
271
-
 
 
272
  image = pipe(
273
- prompt=prompt,
274
- negative_prompt=negative,
 
 
275
  width=1024,
276
  height=1024,
277
  image_embeds=face_emb,
 
27
  from pipeline_stable_diffusion_xl_instantid_img2img import StableDiffusionXLInstantIDImg2ImgPipeline, draw_kps
28
  from controlnet_aux import ZoeDetector
29
 
30
+ from compel import Compel, ReturnedEmbeddingsType
31
+
32
  with open("sdxl_loras.json", "r") as file:
33
  data = json.load(file)
34
  sdxl_loras_raw = [
 
109
  vae=vae,
110
  controlnet=[identitynet, zoedepthnet],
111
  torch_dtype=torch.float16)
112
+
113
+ compel = Compel(tokenizer=[pipe.tokenizer, pipeline.tokenizer_2] , text_encoder=[pipe.text_encoder, pipe.text_encoder_2], returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, requires_pooled=[False, True])
114
+
115
  pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True)
116
  pipe.load_ip_adapter_instantid(face_adapter)
117
  pipe.set_ip_adapter_scale(0.8)
 
273
  pipe.unload_textual_inversion()
274
  pipe.load_textual_inversion(state_dict_embedding["text_encoders_0"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)
275
  pipe.load_textual_inversion(state_dict_embedding["text_encoders_1"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2)
276
+
277
+ conditioning, pooled = compel(prompt)
278
+ negative_conditioning, negative_pooled = compel(negative)
279
  image = pipe(
280
+ prompt_embeds=conditioning,
281
+ pooled_prompt_embeds=pooled,
282
+ negative_prompt_embeds=negative_conditioning,
283
+ negative_pooled_prompt_embeds=negative_pooled,
284
  width=1024,
285
  height=1024,
286
  image_embeds=face_emb,