Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
import torch | |
from diffusers import AutoencoderKL, TCDScheduler | |
from diffusers.models.model_loading_utils import load_state_dict | |
from gradio_imageslider import ImageSlider | |
from huggingface_hub import hf_hub_download | |
from controlnet_union import ControlNetModel_Union | |
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline | |
from PIL import Image, ImageDraw | |
import numpy as np | |
import cv2 | |
import tempfile | |
import os | |
# Load models and configurations | |
config_file = hf_hub_download( | |
"xinsir/controlnet-union-sdxl-1.0", | |
filename="config_promax.json", | |
) | |
config = ControlNetModel_Union.load_config(config_file) | |
controlnet_model = ControlNetModel_Union.from_config(config) | |
model_file = hf_hub_download( | |
"xinsir/controlnet-union-sdxl-1.0", | |
filename="diffusion_pytorch_model_promax.safetensors", | |
) | |
state_dict = load_state_dict(model_file) | |
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model( | |
controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0" | |
) | |
model.to(device="cuda", dtype=torch.float16) | |
vae = AutoencoderKL.from_pretrained( | |
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16 | |
).to("cuda") | |
pipe = StableDiffusionXLFillPipeline.from_pretrained( | |
"SG161222/RealVisXL_V5.0_Lightning", | |
torch_dtype=torch.float16, | |
vae=vae, | |
controlnet=model, | |
variant="fp16", | |
).to("cuda") | |
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config) | |
def can_expand(source_width, source_height, target_width, target_height, alignment): | |
"""Checks if the image can be expanded based on the alignment.""" | |
if alignment in ("Left", "Right") and source_width >= target_width: | |
return False | |
if alignment in ("Top", "Bottom") and source_height >= target_height: | |
return False | |
return True | |
def infer(image, width=1024, height=1024, overlap_width=18, num_inference_steps=8, resize_option="custom", custom_resize_size=768, prompt_input=None, alignment="Middle"): | |
source = image | |
target_size = (width, height) | |
overlap = overlap_width | |
# Upscale if source is smaller than target in both dimensions | |
if source.width < target_size[0] and source.height < target_size[1]: | |
scale_factor = min(target_size[0] / source.width, target_size[1] / source.height) | |
new_width = int(source.width * scale_factor) | |
new_height = int(source.height * scale_factor) | |
source = source.resize((new_width, new_height), Image.LANCZOS) | |
if source.width > target_size[0] or source.height > target_size[1]: | |
scale_factor = min(target_size[0] / source.width, target_size[1] / source.height) | |
new_width = int(source.width * scale_factor) | |
new_height = int(source.height * scale_factor) | |
source = source.resize((new_width, new_height), Image.LANCZOS) | |
if resize_option == "Full": | |
resize_size = max(source.width, source.height) | |
elif resize_option == "1/2": | |
resize_size = max(source.width, source.height) // 2 | |
elif resize_option == "1/3": | |
resize_size = max(source.width, source.height) // 3 | |
elif resize_option == "1/4": | |
resize_size = max(source.width, source.height) // 4 | |
else: # Custom | |
resize_size = custom_resize_size | |
aspect_ratio = source.height / source.width | |
new_width = resize_size | |
new_height = int(resize_size * aspect_ratio) | |
source = source.resize((new_width, new_height), Image.LANCZOS) | |
if not can_expand(source.width, source.height, target_size[0], target_size[1], alignment): | |
alignment = "Middle" | |
# Calculate margins based on alignment | |
if alignment == "Middle": | |
margin_x = (target_size[0] - source.width) // 2 | |
margin_y = (target_size[1] - source.height) // 2 | |
elif alignment == "Left": | |
margin_x = 0 | |
margin_y = (target_size[1] - source.height) // 2 | |
elif alignment == "Right": | |
margin_x = target_size[0] - source.width | |
margin_y = (target_size[1] - source.height) // 2 | |
elif alignment == "Top": | |
margin_x = (target_size[0] - source.width) // 2 | |
margin_y = 0 | |
elif alignment == "Bottom": | |
margin_x = (target_size[0] - source.width) // 2 | |
margin_y = target_size[1] - source.height | |
background = Image.new('RGB', target_size, (255, 255, 255)) | |
background.paste(source, (margin_x, margin_y)) | |
mask = Image.new('L', target_size, 255) | |
mask_draw = ImageDraw.Draw(mask) | |
# Adjust mask generation based on alignment | |
if alignment == "Middle": | |
mask_draw.rectangle([ | |
(margin_x + overlap, margin_y + overlap), | |
(margin_x + source.width - overlap, margin_y + source.height - overlap) | |
], fill=0) | |
elif alignment == "Left": | |
mask_draw.rectangle([ | |
(margin_x, margin_y), | |
(margin_x + source.width - overlap, margin_y + source.height) | |
], fill=0) | |
elif alignment == "Right": | |
mask_draw.rectangle([ | |
(margin_x + overlap, margin_y), | |
(margin_x + source.width, margin_y + source.height) | |
], fill=0) | |
elif alignment == "Top": | |
mask_draw.rectangle([ | |
(margin_x, margin_y), | |
(margin_x + source.width, margin_y + source.height - overlap) | |
], fill=0) | |
elif alignment == "Bottom": | |
mask_draw.rectangle([ | |
(margin_x, margin_y + overlap), | |
(margin_x + source.width, margin_y + source.height) | |
], fill=0) | |
cnet_image = background.copy() | |
cnet_image.paste(0, (0, 0), mask) | |
final_prompt = f"{prompt_input} , high quality, 4k" | |
( | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
) = pipe.encode_prompt(final_prompt, "cuda", True) | |
for image in pipe( | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
image=cnet_image, | |
num_inference_steps=num_inference_steps | |
): | |
yield cnet_image, image | |
image = image.convert("RGBA") | |
cnet_image.paste(image, (0, 0), mask) | |
yield background, cnet_image | |
def create_zoom_animation(previous_frame, next_frame, steps): | |
# List to store all frames | |
interpolated_frames = [] | |
for i in range(steps): | |
t = i / (steps - 1) # Normalized time between 0 and 1 | |
# Compute zoom factor (from 1 to 2) | |
z = 1 + t # Zoom factor increases from 1 to 2 | |
if i < steps - 1: | |
# Compute crop size | |
crop_size = int(1024 / z) | |
# Compute crop coordinates to center the crop | |
x0 = (1024 - crop_size) // 2 | |
y0 = (1024 - crop_size) // 2 | |
x1 = x0 + crop_size | |
y1 = y0 + crop_size | |
# Crop the previous_frame | |
cropped_prev = previous_frame.crop((x0, y0, x1, y1)) | |
# Resize to 512x512 | |
resized_frame = cropped_prev.resize((512, 512), Image.LANCZOS) | |
interpolated_frames.append(resized_frame) | |
else: | |
# For the last frame, use the next_frame resized to 512x512 | |
resized_frame = next_frame.resize((512, 512), Image.LANCZOS) | |
return interpolated_frames | |
def create_video_from_images(image_list, fps=24): | |
if not image_list: | |
return None | |
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as temp_video_file: | |
video_path = temp_video_file.name | |
frame = np.array(image_list[0]) | |
height, width, layers = frame.shape | |
fourcc = cv2.VideoWriter_fourcc(*'mp4v') | |
video = cv2.VideoWriter(video_path, fourcc, fps, (width, height)) | |
for image in image_list: | |
video.write(cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)) | |
video.release() | |
return video_path | |
def loop_outpainting(image, width=1024, height=1024, overlap_width=6, num_inference_steps=8, | |
resize_option="custom", custom_resize_size=512, prompt_input=None, | |
alignment="Middle", num_iterations=6, fps=24, num_interpolation_frames=18, | |
progress=gr.Progress()): | |
current_image = image | |
if(current_image.width != 1024 or current_image.height != 1024): | |
for first_result in infer(current_image, 1024, 1024, overlap_width, num_inference_steps, | |
resize_option, 1024, prompt_input, alignment): | |
pass | |
current_image = first_result[1] | |
image_list = [current_image] | |
for _ in progress.tqdm(range(num_iterations), desc="Generating frames"): | |
# Generate new image | |
for step_result in infer(current_image, width, height, overlap_width, num_inference_steps, | |
resize_option, custom_resize_size, prompt_input, alignment): | |
pass # Process all steps | |
new_image = step_result[1] # Get the final image from the last step | |
image_list.append(new_image) | |
# Use new image as input for next iteration | |
current_image = new_image | |
# Reverse the image list to create a zoom-in effect | |
reverse_image_list = image_list[::-1] | |
# Create interpolated frames | |
final_frame_list = [] | |
for i in range(len(reverse_image_list) - 1): | |
larger_frame = reverse_image_list[i] | |
smaller_frame = reverse_image_list[i + 1] | |
interpolated_frames = create_zoom_animation(larger_frame, smaller_frame, num_interpolation_frames) | |
if i == 0: | |
# Include all frames for the first sequence | |
final_frame_list.extend(interpolated_frames) | |
else: | |
# Exclude the first frame to avoid duplication | |
final_frame_list.extend(interpolated_frames[1:]) | |
# Create video from the final frame list | |
video_path = create_video_from_images(final_frame_list, fps) | |
return video_path | |
loop_outpainting.zerogpu = True | |
def clear_result(): | |
"""Clears the result ImageSlider.""" | |
return gr.update(value=None) | |
def preload_presets(target_ratio, ui_width, ui_height): | |
"""Updates the width and height sliders based on the selected aspect ratio.""" | |
if target_ratio == "9:16": | |
changed_width = 720 | |
changed_height = 1280 | |
return changed_width, changed_height, gr.update(open=False) | |
elif target_ratio == "16:9": | |
changed_width = 1280 | |
changed_height = 720 | |
return changed_width, changed_height, gr.update(open=False) | |
elif target_ratio == "1:1": | |
changed_width = 1024 | |
changed_height = 1024 | |
return changed_width, changed_height, gr.update(open=False) | |
elif target_ratio == "Custom": | |
return ui_width, ui_height, gr.update(open=True) | |
def select_the_right_preset(user_width, user_height): | |
if user_width == 720 and user_height == 1280: | |
return "9:16" | |
elif user_width == 1280 and user_height == 720: | |
return "16:9" | |
elif user_width == 1024 and user_height == 1024: | |
return "1:1" | |
else: | |
return "Custom" | |
def toggle_custom_resize_slider(resize_option): | |
return gr.update(visible=(resize_option == "Custom")) | |
css = """ | |
.gradio-container { | |
width: 1200px !important; | |
} | |
""" | |
title = """<h1 align="center">Outpaint Video Zoom-In</h1>""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(): | |
gr.HTML(title) | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image( | |
type="pil", | |
label="Input Image" | |
) | |
prompt_input = gr.Textbox(label="Prompt (Optional)", visible=True) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
run_button = gr.Button("Generate", visible=False) | |
loop_button = gr.Button("Create outpainting video") | |
with gr.Row(): | |
target_ratio = gr.Radio( | |
label="Expected Ratio", | |
choices=["9:16", "16:9", "1:1", "Custom"], | |
value="1:1", | |
scale=2, | |
visible=False | |
) | |
alignment_dropdown = gr.Dropdown( | |
choices=["Middle", "Left", "Right", "Top", "Bottom"], | |
value="Middle", | |
label="Alignment", | |
visible=False | |
) | |
with gr.Accordion(label="Advanced settings", open=False, visible=False) as settings_panel: | |
with gr.Column(): | |
with gr.Row(): | |
width_slider = gr.Slider( | |
label="Width", | |
minimum=720, | |
maximum=1536, | |
step=8, | |
value=1024, | |
) | |
height_slider = gr.Slider( | |
label="Height", | |
minimum=720, | |
maximum=1536, | |
step=8, | |
value=1024, | |
) | |
with gr.Row(): | |
num_inference_steps = gr.Slider(label="Steps", minimum=4, maximum=12, step=1, value=8) | |
overlap_width = gr.Slider( | |
label="Mask overlap width", | |
minimum=1, | |
maximum=50, | |
value=1, | |
step=1 | |
) | |
with gr.Row(): | |
resize_option = gr.Radio( | |
label="Resize input image", | |
choices=["Full", "1/2", "1/3", "1/4", "Custom"], | |
value="Custom" | |
) | |
custom_resize_size = gr.Slider( | |
label="Custom resize size", | |
minimum=64, | |
maximum=1024, | |
step=8, | |
value=512, | |
visible=False | |
) | |
with gr.Row(): | |
num_iterations = gr.Slider(label="Number of iterations", minimum=2, maximum=24, step=1, value=6) | |
fps = gr.Slider(label="fps", minimum=1, maximum=24, value=24) | |
with gr.Row(): | |
num_interpolation_frames = gr.Slider(label="Interpolation frames", minimum=0, maximum=10, step=1, value=18) | |
with gr.Column(): | |
result = ImageSlider( | |
interactive=False, | |
label="Generated Image", | |
visible=False | |
) | |
use_as_input_button = gr.Button("Use as Input Image", visible=False) | |
video_output = gr.Video(label="Outpainting Video") | |
gr.Examples( | |
examples=["hide.png", "disaster.png"], | |
fn=loop_outpainting, | |
inputs=input_image, | |
outputs=video_output, | |
cache_examples="lazy", | |
) | |
def use_output_as_input(output_image): | |
"""Sets the generated output as the new input image.""" | |
return gr.update(value=output_image[1]) | |
use_as_input_button.click( | |
fn=use_output_as_input, | |
inputs=[result], | |
outputs=[input_image] | |
) | |
target_ratio.change( | |
fn=preload_presets, | |
inputs=[target_ratio, width_slider, height_slider], | |
outputs=[width_slider, height_slider, settings_panel], | |
queue=False | |
) | |
width_slider.change( | |
fn=select_the_right_preset, | |
inputs=[width_slider, height_slider], | |
outputs=[target_ratio], | |
queue=False | |
) | |
height_slider.change( | |
fn=select_the_right_preset, | |
inputs=[width_slider, height_slider], | |
outputs=[target_ratio], | |
queue=False | |
) | |
resize_option.change( | |
fn=toggle_custom_resize_slider, | |
inputs=[resize_option], | |
outputs=[custom_resize_size], | |
queue=False | |
) | |
run_button.click( | |
fn=clear_result, | |
inputs=None, | |
outputs=result, | |
).then( | |
fn=infer, | |
inputs=[input_image, width_slider, height_slider, overlap_width, num_inference_steps, | |
resize_option, custom_resize_size, prompt_input, alignment_dropdown], | |
outputs=result, | |
).then( | |
fn=lambda: gr.update(visible=True), | |
inputs=None, | |
outputs=use_as_input_button, | |
) | |
prompt_input.submit( | |
fn=clear_result, | |
inputs=None, | |
outputs=result, | |
).then( | |
fn=infer, | |
inputs=[input_image, width_slider, height_slider, overlap_width, num_inference_steps, | |
resize_option, custom_resize_size, prompt_input, alignment_dropdown], | |
outputs=result, | |
).then( | |
fn=lambda: gr.update(visible=True), | |
inputs=None, | |
outputs=use_as_input_button, | |
) | |
loop_button.click( | |
fn=loop_outpainting, | |
inputs=[input_image, width_slider, height_slider, overlap_width, num_inference_steps, | |
resize_option, custom_resize_size, prompt_input, alignment_dropdown, | |
num_iterations, fps, num_interpolation_frames], | |
outputs=video_output, | |
) | |
demo.queue(max_size=12).launch(share=False) |