Spaces:
Running
on
Zero
Running
on
Zero
Commit
•
adcff07
1
Parent(s):
537ebb9
Delete configs
Browse files- configs/.DS_Store +0 -0
- configs/example_training/autoencoder/kl-f4/imagenet-attnfree-logvar.yaml +0 -104
- configs/example_training/autoencoder/kl-f4/imagenet-kl_f8_8chn.yaml +0 -105
- configs/example_training/imagenet-f8_cond.yaml +0 -185
- configs/example_training/toy/cifar10_cond.yaml +0 -98
- configs/example_training/toy/mnist.yaml +0 -79
- configs/example_training/toy/mnist_cond.yaml +0 -98
- configs/example_training/toy/mnist_cond_discrete_eps.yaml +0 -103
- configs/example_training/toy/mnist_cond_l1_loss.yaml +0 -99
- configs/example_training/toy/mnist_cond_with_ema.yaml +0 -100
- configs/example_training/txt2img-clipl-legacy-ucg-training.yaml +0 -182
- configs/example_training/txt2img-clipl.yaml +0 -184
- configs/inference/sd_2_1.yaml +0 -60
- configs/inference/sd_2_1_768.yaml +0 -60
- configs/inference/sd_xl_base.yaml +0 -93
- configs/inference/sd_xl_refiner.yaml +0 -86
- configs/inference/svd.yaml +0 -131
- configs/inference/svd_image_decoder.yaml +0 -114
configs/.DS_Store
DELETED
Binary file (6.15 kB)
|
|
configs/example_training/autoencoder/kl-f4/imagenet-attnfree-logvar.yaml
DELETED
@@ -1,104 +0,0 @@
|
|
1 |
-
model:
|
2 |
-
base_learning_rate: 4.5e-6
|
3 |
-
target: sgm.models.autoencoder.AutoencodingEngine
|
4 |
-
params:
|
5 |
-
input_key: jpg
|
6 |
-
monitor: val/rec_loss
|
7 |
-
|
8 |
-
loss_config:
|
9 |
-
target: sgm.modules.autoencoding.losses.GeneralLPIPSWithDiscriminator
|
10 |
-
params:
|
11 |
-
perceptual_weight: 0.25
|
12 |
-
disc_start: 20001
|
13 |
-
disc_weight: 0.5
|
14 |
-
learn_logvar: True
|
15 |
-
|
16 |
-
regularization_weights:
|
17 |
-
kl_loss: 1.0
|
18 |
-
|
19 |
-
regularizer_config:
|
20 |
-
target: sgm.modules.autoencoding.regularizers.DiagonalGaussianRegularizer
|
21 |
-
|
22 |
-
encoder_config:
|
23 |
-
target: sgm.modules.diffusionmodules.model.Encoder
|
24 |
-
params:
|
25 |
-
attn_type: none
|
26 |
-
double_z: True
|
27 |
-
z_channels: 4
|
28 |
-
resolution: 256
|
29 |
-
in_channels: 3
|
30 |
-
out_ch: 3
|
31 |
-
ch: 128
|
32 |
-
ch_mult: [1, 2, 4]
|
33 |
-
num_res_blocks: 4
|
34 |
-
attn_resolutions: []
|
35 |
-
dropout: 0.0
|
36 |
-
|
37 |
-
decoder_config:
|
38 |
-
target: sgm.modules.diffusionmodules.model.Decoder
|
39 |
-
params: ${model.params.encoder_config.params}
|
40 |
-
|
41 |
-
data:
|
42 |
-
target: sgm.data.dataset.StableDataModuleFromConfig
|
43 |
-
params:
|
44 |
-
train:
|
45 |
-
datapipeline:
|
46 |
-
urls:
|
47 |
-
- DATA-PATH
|
48 |
-
pipeline_config:
|
49 |
-
shardshuffle: 10000
|
50 |
-
sample_shuffle: 10000
|
51 |
-
|
52 |
-
decoders:
|
53 |
-
- pil
|
54 |
-
|
55 |
-
postprocessors:
|
56 |
-
- target: sdata.mappers.TorchVisionImageTransforms
|
57 |
-
params:
|
58 |
-
key: jpg
|
59 |
-
transforms:
|
60 |
-
- target: torchvision.transforms.Resize
|
61 |
-
params:
|
62 |
-
size: 256
|
63 |
-
interpolation: 3
|
64 |
-
- target: torchvision.transforms.ToTensor
|
65 |
-
- target: sdata.mappers.Rescaler
|
66 |
-
- target: sdata.mappers.AddOriginalImageSizeAsTupleAndCropToSquare
|
67 |
-
params:
|
68 |
-
h_key: height
|
69 |
-
w_key: width
|
70 |
-
|
71 |
-
loader:
|
72 |
-
batch_size: 8
|
73 |
-
num_workers: 4
|
74 |
-
|
75 |
-
|
76 |
-
lightning:
|
77 |
-
strategy:
|
78 |
-
target: pytorch_lightning.strategies.DDPStrategy
|
79 |
-
params:
|
80 |
-
find_unused_parameters: True
|
81 |
-
|
82 |
-
modelcheckpoint:
|
83 |
-
params:
|
84 |
-
every_n_train_steps: 5000
|
85 |
-
|
86 |
-
callbacks:
|
87 |
-
metrics_over_trainsteps_checkpoint:
|
88 |
-
params:
|
89 |
-
every_n_train_steps: 50000
|
90 |
-
|
91 |
-
image_logger:
|
92 |
-
target: main.ImageLogger
|
93 |
-
params:
|
94 |
-
enable_autocast: False
|
95 |
-
batch_frequency: 1000
|
96 |
-
max_images: 8
|
97 |
-
increase_log_steps: True
|
98 |
-
|
99 |
-
trainer:
|
100 |
-
devices: 0,
|
101 |
-
limit_val_batches: 50
|
102 |
-
benchmark: True
|
103 |
-
accumulate_grad_batches: 1
|
104 |
-
val_check_interval: 10000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/example_training/autoencoder/kl-f4/imagenet-kl_f8_8chn.yaml
DELETED
@@ -1,105 +0,0 @@
|
|
1 |
-
model:
|
2 |
-
base_learning_rate: 4.5e-6
|
3 |
-
target: sgm.models.autoencoder.AutoencodingEngine
|
4 |
-
params:
|
5 |
-
input_key: jpg
|
6 |
-
monitor: val/loss/rec
|
7 |
-
disc_start_iter: 0
|
8 |
-
|
9 |
-
encoder_config:
|
10 |
-
target: sgm.modules.diffusionmodules.model.Encoder
|
11 |
-
params:
|
12 |
-
attn_type: vanilla-xformers
|
13 |
-
double_z: true
|
14 |
-
z_channels: 8
|
15 |
-
resolution: 256
|
16 |
-
in_channels: 3
|
17 |
-
out_ch: 3
|
18 |
-
ch: 128
|
19 |
-
ch_mult: [1, 2, 4, 4]
|
20 |
-
num_res_blocks: 2
|
21 |
-
attn_resolutions: []
|
22 |
-
dropout: 0.0
|
23 |
-
|
24 |
-
decoder_config:
|
25 |
-
target: sgm.modules.diffusionmodules.model.Decoder
|
26 |
-
params: ${model.params.encoder_config.params}
|
27 |
-
|
28 |
-
regularizer_config:
|
29 |
-
target: sgm.modules.autoencoding.regularizers.DiagonalGaussianRegularizer
|
30 |
-
|
31 |
-
loss_config:
|
32 |
-
target: sgm.modules.autoencoding.losses.GeneralLPIPSWithDiscriminator
|
33 |
-
params:
|
34 |
-
perceptual_weight: 0.25
|
35 |
-
disc_start: 20001
|
36 |
-
disc_weight: 0.5
|
37 |
-
learn_logvar: True
|
38 |
-
|
39 |
-
regularization_weights:
|
40 |
-
kl_loss: 1.0
|
41 |
-
|
42 |
-
data:
|
43 |
-
target: sgm.data.dataset.StableDataModuleFromConfig
|
44 |
-
params:
|
45 |
-
train:
|
46 |
-
datapipeline:
|
47 |
-
urls:
|
48 |
-
- DATA-PATH
|
49 |
-
pipeline_config:
|
50 |
-
shardshuffle: 10000
|
51 |
-
sample_shuffle: 10000
|
52 |
-
|
53 |
-
decoders:
|
54 |
-
- pil
|
55 |
-
|
56 |
-
postprocessors:
|
57 |
-
- target: sdata.mappers.TorchVisionImageTransforms
|
58 |
-
params:
|
59 |
-
key: jpg
|
60 |
-
transforms:
|
61 |
-
- target: torchvision.transforms.Resize
|
62 |
-
params:
|
63 |
-
size: 256
|
64 |
-
interpolation: 3
|
65 |
-
- target: torchvision.transforms.ToTensor
|
66 |
-
- target: sdata.mappers.Rescaler
|
67 |
-
- target: sdata.mappers.AddOriginalImageSizeAsTupleAndCropToSquare
|
68 |
-
params:
|
69 |
-
h_key: height
|
70 |
-
w_key: width
|
71 |
-
|
72 |
-
loader:
|
73 |
-
batch_size: 8
|
74 |
-
num_workers: 4
|
75 |
-
|
76 |
-
|
77 |
-
lightning:
|
78 |
-
strategy:
|
79 |
-
target: pytorch_lightning.strategies.DDPStrategy
|
80 |
-
params:
|
81 |
-
find_unused_parameters: True
|
82 |
-
|
83 |
-
modelcheckpoint:
|
84 |
-
params:
|
85 |
-
every_n_train_steps: 5000
|
86 |
-
|
87 |
-
callbacks:
|
88 |
-
metrics_over_trainsteps_checkpoint:
|
89 |
-
params:
|
90 |
-
every_n_train_steps: 50000
|
91 |
-
|
92 |
-
image_logger:
|
93 |
-
target: main.ImageLogger
|
94 |
-
params:
|
95 |
-
enable_autocast: False
|
96 |
-
batch_frequency: 1000
|
97 |
-
max_images: 8
|
98 |
-
increase_log_steps: True
|
99 |
-
|
100 |
-
trainer:
|
101 |
-
devices: 0,
|
102 |
-
limit_val_batches: 50
|
103 |
-
benchmark: True
|
104 |
-
accumulate_grad_batches: 1
|
105 |
-
val_check_interval: 10000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/example_training/imagenet-f8_cond.yaml
DELETED
@@ -1,185 +0,0 @@
|
|
1 |
-
model:
|
2 |
-
base_learning_rate: 1.0e-4
|
3 |
-
target: sgm.models.diffusion.DiffusionEngine
|
4 |
-
params:
|
5 |
-
scale_factor: 0.13025
|
6 |
-
disable_first_stage_autocast: True
|
7 |
-
log_keys:
|
8 |
-
- cls
|
9 |
-
|
10 |
-
scheduler_config:
|
11 |
-
target: sgm.lr_scheduler.LambdaLinearScheduler
|
12 |
-
params:
|
13 |
-
warm_up_steps: [10000]
|
14 |
-
cycle_lengths: [10000000000000]
|
15 |
-
f_start: [1.e-6]
|
16 |
-
f_max: [1.]
|
17 |
-
f_min: [1.]
|
18 |
-
|
19 |
-
denoiser_config:
|
20 |
-
target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiser
|
21 |
-
params:
|
22 |
-
num_idx: 1000
|
23 |
-
|
24 |
-
scaling_config:
|
25 |
-
target: sgm.modules.diffusionmodules.denoiser_scaling.EpsScaling
|
26 |
-
discretization_config:
|
27 |
-
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
|
28 |
-
|
29 |
-
network_config:
|
30 |
-
target: sgm.modules.diffusionmodules.openaimodel.UNetModel
|
31 |
-
params:
|
32 |
-
use_checkpoint: True
|
33 |
-
in_channels: 4
|
34 |
-
out_channels: 4
|
35 |
-
model_channels: 256
|
36 |
-
attention_resolutions: [1, 2, 4]
|
37 |
-
num_res_blocks: 2
|
38 |
-
channel_mult: [1, 2, 4]
|
39 |
-
num_head_channels: 64
|
40 |
-
num_classes: sequential
|
41 |
-
adm_in_channels: 1024
|
42 |
-
transformer_depth: 1
|
43 |
-
context_dim: 1024
|
44 |
-
spatial_transformer_attn_type: softmax-xformers
|
45 |
-
|
46 |
-
conditioner_config:
|
47 |
-
target: sgm.modules.GeneralConditioner
|
48 |
-
params:
|
49 |
-
emb_models:
|
50 |
-
- is_trainable: True
|
51 |
-
input_key: cls
|
52 |
-
ucg_rate: 0.2
|
53 |
-
target: sgm.modules.encoders.modules.ClassEmbedder
|
54 |
-
params:
|
55 |
-
add_sequence_dim: True
|
56 |
-
embed_dim: 1024
|
57 |
-
n_classes: 1000
|
58 |
-
|
59 |
-
- is_trainable: False
|
60 |
-
ucg_rate: 0.2
|
61 |
-
input_key: original_size_as_tuple
|
62 |
-
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
63 |
-
params:
|
64 |
-
outdim: 256
|
65 |
-
|
66 |
-
- is_trainable: False
|
67 |
-
input_key: crop_coords_top_left
|
68 |
-
ucg_rate: 0.2
|
69 |
-
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
70 |
-
params:
|
71 |
-
outdim: 256
|
72 |
-
|
73 |
-
first_stage_config:
|
74 |
-
target: sgm.models.autoencoder.AutoencoderKL
|
75 |
-
params:
|
76 |
-
ckpt_path: CKPT_PATH
|
77 |
-
embed_dim: 4
|
78 |
-
monitor: val/rec_loss
|
79 |
-
ddconfig:
|
80 |
-
attn_type: vanilla-xformers
|
81 |
-
double_z: true
|
82 |
-
z_channels: 4
|
83 |
-
resolution: 256
|
84 |
-
in_channels: 3
|
85 |
-
out_ch: 3
|
86 |
-
ch: 128
|
87 |
-
ch_mult: [1, 2, 4, 4]
|
88 |
-
num_res_blocks: 2
|
89 |
-
attn_resolutions: []
|
90 |
-
dropout: 0.0
|
91 |
-
lossconfig:
|
92 |
-
target: torch.nn.Identity
|
93 |
-
|
94 |
-
loss_fn_config:
|
95 |
-
target: sgm.modules.diffusionmodules.loss.StandardDiffusionLoss
|
96 |
-
params:
|
97 |
-
loss_weighting_config:
|
98 |
-
target: sgm.modules.diffusionmodules.loss_weighting.EpsWeighting
|
99 |
-
sigma_sampler_config:
|
100 |
-
target: sgm.modules.diffusionmodules.sigma_sampling.DiscreteSampling
|
101 |
-
params:
|
102 |
-
num_idx: 1000
|
103 |
-
|
104 |
-
discretization_config:
|
105 |
-
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
|
106 |
-
|
107 |
-
sampler_config:
|
108 |
-
target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler
|
109 |
-
params:
|
110 |
-
num_steps: 50
|
111 |
-
|
112 |
-
discretization_config:
|
113 |
-
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
|
114 |
-
|
115 |
-
guider_config:
|
116 |
-
target: sgm.modules.diffusionmodules.guiders.VanillaCFG
|
117 |
-
params:
|
118 |
-
scale: 5.0
|
119 |
-
|
120 |
-
data:
|
121 |
-
target: sgm.data.dataset.StableDataModuleFromConfig
|
122 |
-
params:
|
123 |
-
train:
|
124 |
-
datapipeline:
|
125 |
-
urls:
|
126 |
-
# USER: adapt this path the root of your custom dataset
|
127 |
-
- DATA_PATH
|
128 |
-
pipeline_config:
|
129 |
-
shardshuffle: 10000
|
130 |
-
sample_shuffle: 10000 # USER: you might wanna adapt depending on your available RAM
|
131 |
-
|
132 |
-
decoders:
|
133 |
-
- pil
|
134 |
-
|
135 |
-
postprocessors:
|
136 |
-
- target: sdata.mappers.TorchVisionImageTransforms
|
137 |
-
params:
|
138 |
-
key: jpg # USER: you might wanna adapt this for your custom dataset
|
139 |
-
transforms:
|
140 |
-
- target: torchvision.transforms.Resize
|
141 |
-
params:
|
142 |
-
size: 256
|
143 |
-
interpolation: 3
|
144 |
-
- target: torchvision.transforms.ToTensor
|
145 |
-
- target: sdata.mappers.Rescaler
|
146 |
-
|
147 |
-
- target: sdata.mappers.AddOriginalImageSizeAsTupleAndCropToSquare
|
148 |
-
params:
|
149 |
-
h_key: height # USER: you might wanna adapt this for your custom dataset
|
150 |
-
w_key: width # USER: you might wanna adapt this for your custom dataset
|
151 |
-
|
152 |
-
loader:
|
153 |
-
batch_size: 64
|
154 |
-
num_workers: 6
|
155 |
-
|
156 |
-
lightning:
|
157 |
-
modelcheckpoint:
|
158 |
-
params:
|
159 |
-
every_n_train_steps: 5000
|
160 |
-
|
161 |
-
callbacks:
|
162 |
-
metrics_over_trainsteps_checkpoint:
|
163 |
-
params:
|
164 |
-
every_n_train_steps: 25000
|
165 |
-
|
166 |
-
image_logger:
|
167 |
-
target: main.ImageLogger
|
168 |
-
params:
|
169 |
-
disabled: False
|
170 |
-
enable_autocast: False
|
171 |
-
batch_frequency: 1000
|
172 |
-
max_images: 8
|
173 |
-
increase_log_steps: True
|
174 |
-
log_first_step: False
|
175 |
-
log_images_kwargs:
|
176 |
-
use_ema_scope: False
|
177 |
-
N: 8
|
178 |
-
n_rows: 2
|
179 |
-
|
180 |
-
trainer:
|
181 |
-
devices: 0,
|
182 |
-
benchmark: True
|
183 |
-
num_sanity_val_steps: 0
|
184 |
-
accumulate_grad_batches: 1
|
185 |
-
max_epochs: 1000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/example_training/toy/cifar10_cond.yaml
DELETED
@@ -1,98 +0,0 @@
|
|
1 |
-
model:
|
2 |
-
base_learning_rate: 1.0e-4
|
3 |
-
target: sgm.models.diffusion.DiffusionEngine
|
4 |
-
params:
|
5 |
-
denoiser_config:
|
6 |
-
target: sgm.modules.diffusionmodules.denoiser.Denoiser
|
7 |
-
params:
|
8 |
-
scaling_config:
|
9 |
-
target: sgm.modules.diffusionmodules.denoiser_scaling.EDMScaling
|
10 |
-
params:
|
11 |
-
sigma_data: 1.0
|
12 |
-
|
13 |
-
network_config:
|
14 |
-
target: sgm.modules.diffusionmodules.openaimodel.UNetModel
|
15 |
-
params:
|
16 |
-
in_channels: 3
|
17 |
-
out_channels: 3
|
18 |
-
model_channels: 32
|
19 |
-
attention_resolutions: []
|
20 |
-
num_res_blocks: 4
|
21 |
-
channel_mult: [1, 2, 2]
|
22 |
-
num_head_channels: 32
|
23 |
-
num_classes: sequential
|
24 |
-
adm_in_channels: 128
|
25 |
-
|
26 |
-
conditioner_config:
|
27 |
-
target: sgm.modules.GeneralConditioner
|
28 |
-
params:
|
29 |
-
emb_models:
|
30 |
-
- is_trainable: True
|
31 |
-
input_key: cls
|
32 |
-
ucg_rate: 0.2
|
33 |
-
target: sgm.modules.encoders.modules.ClassEmbedder
|
34 |
-
params:
|
35 |
-
embed_dim: 128
|
36 |
-
n_classes: 10
|
37 |
-
|
38 |
-
first_stage_config:
|
39 |
-
target: sgm.models.autoencoder.IdentityFirstStage
|
40 |
-
|
41 |
-
loss_fn_config:
|
42 |
-
target: sgm.modules.diffusionmodules.loss.StandardDiffusionLoss
|
43 |
-
params:
|
44 |
-
loss_weighting_config:
|
45 |
-
target: sgm.modules.diffusionmodules.loss_weighting.EDMWeighting
|
46 |
-
params:
|
47 |
-
sigma_data: 1.0
|
48 |
-
sigma_sampler_config:
|
49 |
-
target: sgm.modules.diffusionmodules.sigma_sampling.EDMSampling
|
50 |
-
|
51 |
-
sampler_config:
|
52 |
-
target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler
|
53 |
-
params:
|
54 |
-
num_steps: 50
|
55 |
-
|
56 |
-
discretization_config:
|
57 |
-
target: sgm.modules.diffusionmodules.discretizer.EDMDiscretization
|
58 |
-
|
59 |
-
guider_config:
|
60 |
-
target: sgm.modules.diffusionmodules.guiders.VanillaCFG
|
61 |
-
params:
|
62 |
-
scale: 3.0
|
63 |
-
|
64 |
-
data:
|
65 |
-
target: sgm.data.cifar10.CIFAR10Loader
|
66 |
-
params:
|
67 |
-
batch_size: 512
|
68 |
-
num_workers: 1
|
69 |
-
|
70 |
-
lightning:
|
71 |
-
modelcheckpoint:
|
72 |
-
params:
|
73 |
-
every_n_train_steps: 5000
|
74 |
-
|
75 |
-
callbacks:
|
76 |
-
metrics_over_trainsteps_checkpoint:
|
77 |
-
params:
|
78 |
-
every_n_train_steps: 25000
|
79 |
-
|
80 |
-
image_logger:
|
81 |
-
target: main.ImageLogger
|
82 |
-
params:
|
83 |
-
disabled: False
|
84 |
-
batch_frequency: 1000
|
85 |
-
max_images: 64
|
86 |
-
increase_log_steps: True
|
87 |
-
log_first_step: False
|
88 |
-
log_images_kwargs:
|
89 |
-
use_ema_scope: False
|
90 |
-
N: 64
|
91 |
-
n_rows: 8
|
92 |
-
|
93 |
-
trainer:
|
94 |
-
devices: 0,
|
95 |
-
benchmark: True
|
96 |
-
num_sanity_val_steps: 0
|
97 |
-
accumulate_grad_batches: 1
|
98 |
-
max_epochs: 20
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/example_training/toy/mnist.yaml
DELETED
@@ -1,79 +0,0 @@
|
|
1 |
-
model:
|
2 |
-
base_learning_rate: 1.0e-4
|
3 |
-
target: sgm.models.diffusion.DiffusionEngine
|
4 |
-
params:
|
5 |
-
denoiser_config:
|
6 |
-
target: sgm.modules.diffusionmodules.denoiser.Denoiser
|
7 |
-
params:
|
8 |
-
scaling_config:
|
9 |
-
target: sgm.modules.diffusionmodules.denoiser_scaling.EDMScaling
|
10 |
-
params:
|
11 |
-
sigma_data: 1.0
|
12 |
-
|
13 |
-
network_config:
|
14 |
-
target: sgm.modules.diffusionmodules.openaimodel.UNetModel
|
15 |
-
params:
|
16 |
-
in_channels: 1
|
17 |
-
out_channels: 1
|
18 |
-
model_channels: 32
|
19 |
-
attention_resolutions: []
|
20 |
-
num_res_blocks: 4
|
21 |
-
channel_mult: [1, 2, 2]
|
22 |
-
num_head_channels: 32
|
23 |
-
|
24 |
-
first_stage_config:
|
25 |
-
target: sgm.models.autoencoder.IdentityFirstStage
|
26 |
-
|
27 |
-
loss_fn_config:
|
28 |
-
target: sgm.modules.diffusionmodules.loss.StandardDiffusionLoss
|
29 |
-
params:
|
30 |
-
loss_weighting_config:
|
31 |
-
target: sgm.modules.diffusionmodules.loss_weighting.EDMWeighting
|
32 |
-
params:
|
33 |
-
sigma_data: 1.0
|
34 |
-
sigma_sampler_config:
|
35 |
-
target: sgm.modules.diffusionmodules.sigma_sampling.EDMSampling
|
36 |
-
|
37 |
-
sampler_config:
|
38 |
-
target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler
|
39 |
-
params:
|
40 |
-
num_steps: 50
|
41 |
-
|
42 |
-
discretization_config:
|
43 |
-
target: sgm.modules.diffusionmodules.discretizer.EDMDiscretization
|
44 |
-
|
45 |
-
data:
|
46 |
-
target: sgm.data.mnist.MNISTLoader
|
47 |
-
params:
|
48 |
-
batch_size: 512
|
49 |
-
num_workers: 1
|
50 |
-
|
51 |
-
lightning:
|
52 |
-
modelcheckpoint:
|
53 |
-
params:
|
54 |
-
every_n_train_steps: 5000
|
55 |
-
|
56 |
-
callbacks:
|
57 |
-
metrics_over_trainsteps_checkpoint:
|
58 |
-
params:
|
59 |
-
every_n_train_steps: 25000
|
60 |
-
|
61 |
-
image_logger:
|
62 |
-
target: main.ImageLogger
|
63 |
-
params:
|
64 |
-
disabled: False
|
65 |
-
batch_frequency: 1000
|
66 |
-
max_images: 64
|
67 |
-
increase_log_steps: False
|
68 |
-
log_first_step: False
|
69 |
-
log_images_kwargs:
|
70 |
-
use_ema_scope: False
|
71 |
-
N: 64
|
72 |
-
n_rows: 8
|
73 |
-
|
74 |
-
trainer:
|
75 |
-
devices: 0,
|
76 |
-
benchmark: True
|
77 |
-
num_sanity_val_steps: 0
|
78 |
-
accumulate_grad_batches: 1
|
79 |
-
max_epochs: 10
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/example_training/toy/mnist_cond.yaml
DELETED
@@ -1,98 +0,0 @@
|
|
1 |
-
model:
|
2 |
-
base_learning_rate: 1.0e-4
|
3 |
-
target: sgm.models.diffusion.DiffusionEngine
|
4 |
-
params:
|
5 |
-
denoiser_config:
|
6 |
-
target: sgm.modules.diffusionmodules.denoiser.Denoiser
|
7 |
-
params:
|
8 |
-
scaling_config:
|
9 |
-
target: sgm.modules.diffusionmodules.denoiser_scaling.EDMScaling
|
10 |
-
params:
|
11 |
-
sigma_data: 1.0
|
12 |
-
|
13 |
-
network_config:
|
14 |
-
target: sgm.modules.diffusionmodules.openaimodel.UNetModel
|
15 |
-
params:
|
16 |
-
in_channels: 1
|
17 |
-
out_channels: 1
|
18 |
-
model_channels: 32
|
19 |
-
attention_resolutions: []
|
20 |
-
num_res_blocks: 4
|
21 |
-
channel_mult: [1, 2, 2]
|
22 |
-
num_head_channels: 32
|
23 |
-
num_classes: sequential
|
24 |
-
adm_in_channels: 128
|
25 |
-
|
26 |
-
conditioner_config:
|
27 |
-
target: sgm.modules.GeneralConditioner
|
28 |
-
params:
|
29 |
-
emb_models:
|
30 |
-
- is_trainable: True
|
31 |
-
input_key: cls
|
32 |
-
ucg_rate: 0.2
|
33 |
-
target: sgm.modules.encoders.modules.ClassEmbedder
|
34 |
-
params:
|
35 |
-
embed_dim: 128
|
36 |
-
n_classes: 10
|
37 |
-
|
38 |
-
first_stage_config:
|
39 |
-
target: sgm.models.autoencoder.IdentityFirstStage
|
40 |
-
|
41 |
-
loss_fn_config:
|
42 |
-
target: sgm.modules.diffusionmodules.loss.StandardDiffusionLoss
|
43 |
-
params:
|
44 |
-
loss_weighting_config:
|
45 |
-
target: sgm.modules.diffusionmodules.loss_weighting.EDMWeighting
|
46 |
-
params:
|
47 |
-
sigma_data: 1.0
|
48 |
-
sigma_sampler_config:
|
49 |
-
target: sgm.modules.diffusionmodules.sigma_sampling.EDMSampling
|
50 |
-
|
51 |
-
sampler_config:
|
52 |
-
target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler
|
53 |
-
params:
|
54 |
-
num_steps: 50
|
55 |
-
|
56 |
-
discretization_config:
|
57 |
-
target: sgm.modules.diffusionmodules.discretizer.EDMDiscretization
|
58 |
-
|
59 |
-
guider_config:
|
60 |
-
target: sgm.modules.diffusionmodules.guiders.VanillaCFG
|
61 |
-
params:
|
62 |
-
scale: 3.0
|
63 |
-
|
64 |
-
data:
|
65 |
-
target: sgm.data.mnist.MNISTLoader
|
66 |
-
params:
|
67 |
-
batch_size: 512
|
68 |
-
num_workers: 1
|
69 |
-
|
70 |
-
lightning:
|
71 |
-
modelcheckpoint:
|
72 |
-
params:
|
73 |
-
every_n_train_steps: 5000
|
74 |
-
|
75 |
-
callbacks:
|
76 |
-
metrics_over_trainsteps_checkpoint:
|
77 |
-
params:
|
78 |
-
every_n_train_steps: 25000
|
79 |
-
|
80 |
-
image_logger:
|
81 |
-
target: main.ImageLogger
|
82 |
-
params:
|
83 |
-
disabled: False
|
84 |
-
batch_frequency: 1000
|
85 |
-
max_images: 16
|
86 |
-
increase_log_steps: True
|
87 |
-
log_first_step: False
|
88 |
-
log_images_kwargs:
|
89 |
-
use_ema_scope: False
|
90 |
-
N: 16
|
91 |
-
n_rows: 4
|
92 |
-
|
93 |
-
trainer:
|
94 |
-
devices: 0,
|
95 |
-
benchmark: True
|
96 |
-
num_sanity_val_steps: 0
|
97 |
-
accumulate_grad_batches: 1
|
98 |
-
max_epochs: 20
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/example_training/toy/mnist_cond_discrete_eps.yaml
DELETED
@@ -1,103 +0,0 @@
|
|
1 |
-
model:
|
2 |
-
base_learning_rate: 1.0e-4
|
3 |
-
target: sgm.models.diffusion.DiffusionEngine
|
4 |
-
params:
|
5 |
-
denoiser_config:
|
6 |
-
target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiser
|
7 |
-
params:
|
8 |
-
num_idx: 1000
|
9 |
-
|
10 |
-
scaling_config:
|
11 |
-
target: sgm.modules.diffusionmodules.denoiser_scaling.EDMScaling
|
12 |
-
discretization_config:
|
13 |
-
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
|
14 |
-
|
15 |
-
network_config:
|
16 |
-
target: sgm.modules.diffusionmodules.openaimodel.UNetModel
|
17 |
-
params:
|
18 |
-
in_channels: 1
|
19 |
-
out_channels: 1
|
20 |
-
model_channels: 32
|
21 |
-
attention_resolutions: []
|
22 |
-
num_res_blocks: 4
|
23 |
-
channel_mult: [1, 2, 2]
|
24 |
-
num_head_channels: 32
|
25 |
-
num_classes: sequential
|
26 |
-
adm_in_channels: 128
|
27 |
-
|
28 |
-
conditioner_config:
|
29 |
-
target: sgm.modules.GeneralConditioner
|
30 |
-
params:
|
31 |
-
emb_models:
|
32 |
-
- is_trainable: True
|
33 |
-
input_key: cls
|
34 |
-
ucg_rate: 0.2
|
35 |
-
target: sgm.modules.encoders.modules.ClassEmbedder
|
36 |
-
params:
|
37 |
-
embed_dim: 128
|
38 |
-
n_classes: 10
|
39 |
-
|
40 |
-
first_stage_config:
|
41 |
-
target: sgm.models.autoencoder.IdentityFirstStage
|
42 |
-
|
43 |
-
loss_fn_config:
|
44 |
-
target: sgm.modules.diffusionmodules.loss.StandardDiffusionLoss
|
45 |
-
params:
|
46 |
-
loss_weighting_config:
|
47 |
-
target: sgm.modules.diffusionmodules.loss_weighting.EDMWeighting
|
48 |
-
sigma_sampler_config:
|
49 |
-
target: sgm.modules.diffusionmodules.sigma_sampling.DiscreteSampling
|
50 |
-
params:
|
51 |
-
num_idx: 1000
|
52 |
-
|
53 |
-
discretization_config:
|
54 |
-
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
|
55 |
-
|
56 |
-
sampler_config:
|
57 |
-
target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler
|
58 |
-
params:
|
59 |
-
num_steps: 50
|
60 |
-
|
61 |
-
discretization_config:
|
62 |
-
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
|
63 |
-
|
64 |
-
guider_config:
|
65 |
-
target: sgm.modules.diffusionmodules.guiders.VanillaCFG
|
66 |
-
params:
|
67 |
-
scale: 5.0
|
68 |
-
|
69 |
-
data:
|
70 |
-
target: sgm.data.mnist.MNISTLoader
|
71 |
-
params:
|
72 |
-
batch_size: 512
|
73 |
-
num_workers: 1
|
74 |
-
|
75 |
-
lightning:
|
76 |
-
modelcheckpoint:
|
77 |
-
params:
|
78 |
-
every_n_train_steps: 5000
|
79 |
-
|
80 |
-
callbacks:
|
81 |
-
metrics_over_trainsteps_checkpoint:
|
82 |
-
params:
|
83 |
-
every_n_train_steps: 25000
|
84 |
-
|
85 |
-
image_logger:
|
86 |
-
target: main.ImageLogger
|
87 |
-
params:
|
88 |
-
disabled: False
|
89 |
-
batch_frequency: 1000
|
90 |
-
max_images: 16
|
91 |
-
increase_log_steps: True
|
92 |
-
log_first_step: False
|
93 |
-
log_images_kwargs:
|
94 |
-
use_ema_scope: False
|
95 |
-
N: 16
|
96 |
-
n_rows: 4
|
97 |
-
|
98 |
-
trainer:
|
99 |
-
devices: 0,
|
100 |
-
benchmark: True
|
101 |
-
num_sanity_val_steps: 0
|
102 |
-
accumulate_grad_batches: 1
|
103 |
-
max_epochs: 20
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/example_training/toy/mnist_cond_l1_loss.yaml
DELETED
@@ -1,99 +0,0 @@
|
|
1 |
-
model:
|
2 |
-
base_learning_rate: 1.0e-4
|
3 |
-
target: sgm.models.diffusion.DiffusionEngine
|
4 |
-
params:
|
5 |
-
denoiser_config:
|
6 |
-
target: sgm.modules.diffusionmodules.denoiser.Denoiser
|
7 |
-
params:
|
8 |
-
scaling_config:
|
9 |
-
target: sgm.modules.diffusionmodules.denoiser_scaling.EDMScaling
|
10 |
-
params:
|
11 |
-
sigma_data: 1.0
|
12 |
-
|
13 |
-
network_config:
|
14 |
-
target: sgm.modules.diffusionmodules.openaimodel.UNetModel
|
15 |
-
params:
|
16 |
-
in_channels: 1
|
17 |
-
out_channels: 1
|
18 |
-
model_channels: 32
|
19 |
-
attention_resolutions: []
|
20 |
-
num_res_blocks: 4
|
21 |
-
channel_mult: [1, 2, 2]
|
22 |
-
num_head_channels: 32
|
23 |
-
num_classes: sequential
|
24 |
-
adm_in_channels: 128
|
25 |
-
|
26 |
-
conditioner_config:
|
27 |
-
target: sgm.modules.GeneralConditioner
|
28 |
-
params:
|
29 |
-
emb_models:
|
30 |
-
- is_trainable: True
|
31 |
-
input_key: cls
|
32 |
-
ucg_rate: 0.2
|
33 |
-
target: sgm.modules.encoders.modules.ClassEmbedder
|
34 |
-
params:
|
35 |
-
embed_dim: 128
|
36 |
-
n_classes: 10
|
37 |
-
|
38 |
-
first_stage_config:
|
39 |
-
target: sgm.models.autoencoder.IdentityFirstStage
|
40 |
-
|
41 |
-
loss_fn_config:
|
42 |
-
target: sgm.modules.diffusionmodules.loss.StandardDiffusionLoss
|
43 |
-
params:
|
44 |
-
loss_type: l1
|
45 |
-
loss_weighting_config:
|
46 |
-
target: sgm.modules.diffusionmodules.loss_weighting.EDMWeighting
|
47 |
-
params:
|
48 |
-
sigma_data: 1.0
|
49 |
-
sigma_sampler_config:
|
50 |
-
target: sgm.modules.diffusionmodules.sigma_sampling.EDMSampling
|
51 |
-
|
52 |
-
sampler_config:
|
53 |
-
target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler
|
54 |
-
params:
|
55 |
-
num_steps: 50
|
56 |
-
|
57 |
-
discretization_config:
|
58 |
-
target: sgm.modules.diffusionmodules.discretizer.EDMDiscretization
|
59 |
-
|
60 |
-
guider_config:
|
61 |
-
target: sgm.modules.diffusionmodules.guiders.VanillaCFG
|
62 |
-
params:
|
63 |
-
scale: 3.0
|
64 |
-
|
65 |
-
data:
|
66 |
-
target: sgm.data.mnist.MNISTLoader
|
67 |
-
params:
|
68 |
-
batch_size: 512
|
69 |
-
num_workers: 1
|
70 |
-
|
71 |
-
lightning:
|
72 |
-
modelcheckpoint:
|
73 |
-
params:
|
74 |
-
every_n_train_steps: 5000
|
75 |
-
|
76 |
-
callbacks:
|
77 |
-
metrics_over_trainsteps_checkpoint:
|
78 |
-
params:
|
79 |
-
every_n_train_steps: 25000
|
80 |
-
|
81 |
-
image_logger:
|
82 |
-
target: main.ImageLogger
|
83 |
-
params:
|
84 |
-
disabled: False
|
85 |
-
batch_frequency: 1000
|
86 |
-
max_images: 64
|
87 |
-
increase_log_steps: True
|
88 |
-
log_first_step: False
|
89 |
-
log_images_kwargs:
|
90 |
-
use_ema_scope: False
|
91 |
-
N: 64
|
92 |
-
n_rows: 8
|
93 |
-
|
94 |
-
trainer:
|
95 |
-
devices: 0,
|
96 |
-
benchmark: True
|
97 |
-
num_sanity_val_steps: 0
|
98 |
-
accumulate_grad_batches: 1
|
99 |
-
max_epochs: 20
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/example_training/toy/mnist_cond_with_ema.yaml
DELETED
@@ -1,100 +0,0 @@
|
|
1 |
-
model:
|
2 |
-
base_learning_rate: 1.0e-4
|
3 |
-
target: sgm.models.diffusion.DiffusionEngine
|
4 |
-
params:
|
5 |
-
use_ema: True
|
6 |
-
|
7 |
-
denoiser_config:
|
8 |
-
target: sgm.modules.diffusionmodules.denoiser.Denoiser
|
9 |
-
params:
|
10 |
-
scaling_config:
|
11 |
-
target: sgm.modules.diffusionmodules.denoiser_scaling.EDMScaling
|
12 |
-
params:
|
13 |
-
sigma_data: 1.0
|
14 |
-
|
15 |
-
network_config:
|
16 |
-
target: sgm.modules.diffusionmodules.openaimodel.UNetModel
|
17 |
-
params:
|
18 |
-
in_channels: 1
|
19 |
-
out_channels: 1
|
20 |
-
model_channels: 32
|
21 |
-
attention_resolutions: []
|
22 |
-
num_res_blocks: 4
|
23 |
-
channel_mult: [1, 2, 2]
|
24 |
-
num_head_channels: 32
|
25 |
-
num_classes: sequential
|
26 |
-
adm_in_channels: 128
|
27 |
-
|
28 |
-
conditioner_config:
|
29 |
-
target: sgm.modules.GeneralConditioner
|
30 |
-
params:
|
31 |
-
emb_models:
|
32 |
-
- is_trainable: True
|
33 |
-
input_key: cls
|
34 |
-
ucg_rate: 0.2
|
35 |
-
target: sgm.modules.encoders.modules.ClassEmbedder
|
36 |
-
params:
|
37 |
-
embed_dim: 128
|
38 |
-
n_classes: 10
|
39 |
-
|
40 |
-
first_stage_config:
|
41 |
-
target: sgm.models.autoencoder.IdentityFirstStage
|
42 |
-
|
43 |
-
loss_fn_config:
|
44 |
-
target: sgm.modules.diffusionmodules.loss.StandardDiffusionLoss
|
45 |
-
params:
|
46 |
-
loss_weighting_config:
|
47 |
-
target: sgm.modules.diffusionmodules.loss_weighting.EDMWeighting
|
48 |
-
params:
|
49 |
-
sigma_data: 1.0
|
50 |
-
sigma_sampler_config:
|
51 |
-
target: sgm.modules.diffusionmodules.sigma_sampling.EDMSampling
|
52 |
-
|
53 |
-
sampler_config:
|
54 |
-
target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler
|
55 |
-
params:
|
56 |
-
num_steps: 50
|
57 |
-
|
58 |
-
discretization_config:
|
59 |
-
target: sgm.modules.diffusionmodules.discretizer.EDMDiscretization
|
60 |
-
|
61 |
-
guider_config:
|
62 |
-
target: sgm.modules.diffusionmodules.guiders.VanillaCFG
|
63 |
-
params:
|
64 |
-
scale: 3.0
|
65 |
-
|
66 |
-
data:
|
67 |
-
target: sgm.data.mnist.MNISTLoader
|
68 |
-
params:
|
69 |
-
batch_size: 512
|
70 |
-
num_workers: 1
|
71 |
-
|
72 |
-
lightning:
|
73 |
-
modelcheckpoint:
|
74 |
-
params:
|
75 |
-
every_n_train_steps: 5000
|
76 |
-
|
77 |
-
callbacks:
|
78 |
-
metrics_over_trainsteps_checkpoint:
|
79 |
-
params:
|
80 |
-
every_n_train_steps: 25000
|
81 |
-
|
82 |
-
image_logger:
|
83 |
-
target: main.ImageLogger
|
84 |
-
params:
|
85 |
-
disabled: False
|
86 |
-
batch_frequency: 1000
|
87 |
-
max_images: 64
|
88 |
-
increase_log_steps: True
|
89 |
-
log_first_step: False
|
90 |
-
log_images_kwargs:
|
91 |
-
use_ema_scope: False
|
92 |
-
N: 64
|
93 |
-
n_rows: 8
|
94 |
-
|
95 |
-
trainer:
|
96 |
-
devices: 0,
|
97 |
-
benchmark: True
|
98 |
-
num_sanity_val_steps: 0
|
99 |
-
accumulate_grad_batches: 1
|
100 |
-
max_epochs: 20
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/example_training/txt2img-clipl-legacy-ucg-training.yaml
DELETED
@@ -1,182 +0,0 @@
|
|
1 |
-
model:
|
2 |
-
base_learning_rate: 1.0e-4
|
3 |
-
target: sgm.models.diffusion.DiffusionEngine
|
4 |
-
params:
|
5 |
-
scale_factor: 0.13025
|
6 |
-
disable_first_stage_autocast: True
|
7 |
-
log_keys:
|
8 |
-
- txt
|
9 |
-
|
10 |
-
scheduler_config:
|
11 |
-
target: sgm.lr_scheduler.LambdaLinearScheduler
|
12 |
-
params:
|
13 |
-
warm_up_steps: [10000]
|
14 |
-
cycle_lengths: [10000000000000]
|
15 |
-
f_start: [1.e-6]
|
16 |
-
f_max: [1.]
|
17 |
-
f_min: [1.]
|
18 |
-
|
19 |
-
denoiser_config:
|
20 |
-
target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiser
|
21 |
-
params:
|
22 |
-
num_idx: 1000
|
23 |
-
|
24 |
-
scaling_config:
|
25 |
-
target: sgm.modules.diffusionmodules.denoiser_scaling.EpsScaling
|
26 |
-
discretization_config:
|
27 |
-
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
|
28 |
-
|
29 |
-
network_config:
|
30 |
-
target: sgm.modules.diffusionmodules.openaimodel.UNetModel
|
31 |
-
params:
|
32 |
-
use_checkpoint: True
|
33 |
-
in_channels: 4
|
34 |
-
out_channels: 4
|
35 |
-
model_channels: 320
|
36 |
-
attention_resolutions: [1, 2, 4]
|
37 |
-
num_res_blocks: 2
|
38 |
-
channel_mult: [1, 2, 4, 4]
|
39 |
-
num_head_channels: 64
|
40 |
-
num_classes: sequential
|
41 |
-
adm_in_channels: 1792
|
42 |
-
num_heads: 1
|
43 |
-
transformer_depth: 1
|
44 |
-
context_dim: 768
|
45 |
-
spatial_transformer_attn_type: softmax-xformers
|
46 |
-
|
47 |
-
conditioner_config:
|
48 |
-
target: sgm.modules.GeneralConditioner
|
49 |
-
params:
|
50 |
-
emb_models:
|
51 |
-
- is_trainable: True
|
52 |
-
input_key: txt
|
53 |
-
ucg_rate: 0.1
|
54 |
-
legacy_ucg_value: ""
|
55 |
-
target: sgm.modules.encoders.modules.FrozenCLIPEmbedder
|
56 |
-
params:
|
57 |
-
always_return_pooled: True
|
58 |
-
|
59 |
-
- is_trainable: False
|
60 |
-
ucg_rate: 0.1
|
61 |
-
input_key: original_size_as_tuple
|
62 |
-
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
63 |
-
params:
|
64 |
-
outdim: 256
|
65 |
-
|
66 |
-
- is_trainable: False
|
67 |
-
input_key: crop_coords_top_left
|
68 |
-
ucg_rate: 0.1
|
69 |
-
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
70 |
-
params:
|
71 |
-
outdim: 256
|
72 |
-
|
73 |
-
first_stage_config:
|
74 |
-
target: sgm.models.autoencoder.AutoencoderKL
|
75 |
-
params:
|
76 |
-
ckpt_path: CKPT_PATH
|
77 |
-
embed_dim: 4
|
78 |
-
monitor: val/rec_loss
|
79 |
-
ddconfig:
|
80 |
-
attn_type: vanilla-xformers
|
81 |
-
double_z: true
|
82 |
-
z_channels: 4
|
83 |
-
resolution: 256
|
84 |
-
in_channels: 3
|
85 |
-
out_ch: 3
|
86 |
-
ch: 128
|
87 |
-
ch_mult: [ 1, 2, 4, 4 ]
|
88 |
-
num_res_blocks: 2
|
89 |
-
attn_resolutions: [ ]
|
90 |
-
dropout: 0.0
|
91 |
-
lossconfig:
|
92 |
-
target: torch.nn.Identity
|
93 |
-
|
94 |
-
loss_fn_config:
|
95 |
-
target: sgm.modules.diffusionmodules.loss.StandardDiffusionLoss
|
96 |
-
params:
|
97 |
-
loss_weighting_config:
|
98 |
-
target: sgm.modules.diffusionmodules.loss_weighting.EpsWeighting
|
99 |
-
sigma_sampler_config:
|
100 |
-
target: sgm.modules.diffusionmodules.sigma_sampling.DiscreteSampling
|
101 |
-
params:
|
102 |
-
num_idx: 1000
|
103 |
-
|
104 |
-
discretization_config:
|
105 |
-
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
|
106 |
-
|
107 |
-
sampler_config:
|
108 |
-
target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler
|
109 |
-
params:
|
110 |
-
num_steps: 50
|
111 |
-
|
112 |
-
discretization_config:
|
113 |
-
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
|
114 |
-
|
115 |
-
guider_config:
|
116 |
-
target: sgm.modules.diffusionmodules.guiders.VanillaCFG
|
117 |
-
params:
|
118 |
-
scale: 7.5
|
119 |
-
|
120 |
-
data:
|
121 |
-
target: sgm.data.dataset.StableDataModuleFromConfig
|
122 |
-
params:
|
123 |
-
train:
|
124 |
-
datapipeline:
|
125 |
-
urls:
|
126 |
-
# USER: adapt this path the root of your custom dataset
|
127 |
-
- DATA_PATH
|
128 |
-
pipeline_config:
|
129 |
-
shardshuffle: 10000
|
130 |
-
sample_shuffle: 10000 # USER: you might wanna adapt depending on your available RAM
|
131 |
-
|
132 |
-
decoders:
|
133 |
-
- pil
|
134 |
-
|
135 |
-
postprocessors:
|
136 |
-
- target: sdata.mappers.TorchVisionImageTransforms
|
137 |
-
params:
|
138 |
-
key: jpg # USER: you might wanna adapt this for your custom dataset
|
139 |
-
transforms:
|
140 |
-
- target: torchvision.transforms.Resize
|
141 |
-
params:
|
142 |
-
size: 256
|
143 |
-
interpolation: 3
|
144 |
-
- target: torchvision.transforms.ToTensor
|
145 |
-
- target: sdata.mappers.Rescaler
|
146 |
-
- target: sdata.mappers.AddOriginalImageSizeAsTupleAndCropToSquare
|
147 |
-
# USER: you might wanna use non-default parameters due to your custom dataset
|
148 |
-
|
149 |
-
loader:
|
150 |
-
batch_size: 64
|
151 |
-
num_workers: 6
|
152 |
-
|
153 |
-
lightning:
|
154 |
-
modelcheckpoint:
|
155 |
-
params:
|
156 |
-
every_n_train_steps: 5000
|
157 |
-
|
158 |
-
callbacks:
|
159 |
-
metrics_over_trainsteps_checkpoint:
|
160 |
-
params:
|
161 |
-
every_n_train_steps: 25000
|
162 |
-
|
163 |
-
image_logger:
|
164 |
-
target: main.ImageLogger
|
165 |
-
params:
|
166 |
-
disabled: False
|
167 |
-
enable_autocast: False
|
168 |
-
batch_frequency: 1000
|
169 |
-
max_images: 8
|
170 |
-
increase_log_steps: True
|
171 |
-
log_first_step: False
|
172 |
-
log_images_kwargs:
|
173 |
-
use_ema_scope: False
|
174 |
-
N: 8
|
175 |
-
n_rows: 2
|
176 |
-
|
177 |
-
trainer:
|
178 |
-
devices: 0,
|
179 |
-
benchmark: True
|
180 |
-
num_sanity_val_steps: 0
|
181 |
-
accumulate_grad_batches: 1
|
182 |
-
max_epochs: 1000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/example_training/txt2img-clipl.yaml
DELETED
@@ -1,184 +0,0 @@
|
|
1 |
-
model:
|
2 |
-
base_learning_rate: 1.0e-4
|
3 |
-
target: sgm.models.diffusion.DiffusionEngine
|
4 |
-
params:
|
5 |
-
scale_factor: 0.13025
|
6 |
-
disable_first_stage_autocast: True
|
7 |
-
log_keys:
|
8 |
-
- txt
|
9 |
-
|
10 |
-
scheduler_config:
|
11 |
-
target: sgm.lr_scheduler.LambdaLinearScheduler
|
12 |
-
params:
|
13 |
-
warm_up_steps: [10000]
|
14 |
-
cycle_lengths: [10000000000000]
|
15 |
-
f_start: [1.e-6]
|
16 |
-
f_max: [1.]
|
17 |
-
f_min: [1.]
|
18 |
-
|
19 |
-
denoiser_config:
|
20 |
-
target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiser
|
21 |
-
params:
|
22 |
-
num_idx: 1000
|
23 |
-
|
24 |
-
scaling_config:
|
25 |
-
target: sgm.modules.diffusionmodules.denoiser_scaling.EpsScaling
|
26 |
-
discretization_config:
|
27 |
-
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
|
28 |
-
|
29 |
-
network_config:
|
30 |
-
target: sgm.modules.diffusionmodules.openaimodel.UNetModel
|
31 |
-
params:
|
32 |
-
use_checkpoint: True
|
33 |
-
in_channels: 4
|
34 |
-
out_channels: 4
|
35 |
-
model_channels: 320
|
36 |
-
attention_resolutions: [1, 2, 4]
|
37 |
-
num_res_blocks: 2
|
38 |
-
channel_mult: [1, 2, 4, 4]
|
39 |
-
num_head_channels: 64
|
40 |
-
num_classes: sequential
|
41 |
-
adm_in_channels: 1792
|
42 |
-
num_heads: 1
|
43 |
-
transformer_depth: 1
|
44 |
-
context_dim: 768
|
45 |
-
spatial_transformer_attn_type: softmax-xformers
|
46 |
-
|
47 |
-
conditioner_config:
|
48 |
-
target: sgm.modules.GeneralConditioner
|
49 |
-
params:
|
50 |
-
emb_models:
|
51 |
-
- is_trainable: True
|
52 |
-
input_key: txt
|
53 |
-
ucg_rate: 0.1
|
54 |
-
legacy_ucg_value: ""
|
55 |
-
target: sgm.modules.encoders.modules.FrozenCLIPEmbedder
|
56 |
-
params:
|
57 |
-
always_return_pooled: True
|
58 |
-
|
59 |
-
- is_trainable: False
|
60 |
-
ucg_rate: 0.1
|
61 |
-
input_key: original_size_as_tuple
|
62 |
-
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
63 |
-
params:
|
64 |
-
outdim: 256
|
65 |
-
|
66 |
-
- is_trainable: False
|
67 |
-
input_key: crop_coords_top_left
|
68 |
-
ucg_rate: 0.1
|
69 |
-
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
70 |
-
params:
|
71 |
-
outdim: 256
|
72 |
-
|
73 |
-
first_stage_config:
|
74 |
-
target: sgm.models.autoencoder.AutoencoderKL
|
75 |
-
params:
|
76 |
-
ckpt_path: CKPT_PATH
|
77 |
-
embed_dim: 4
|
78 |
-
monitor: val/rec_loss
|
79 |
-
ddconfig:
|
80 |
-
attn_type: vanilla-xformers
|
81 |
-
double_z: true
|
82 |
-
z_channels: 4
|
83 |
-
resolution: 256
|
84 |
-
in_channels: 3
|
85 |
-
out_ch: 3
|
86 |
-
ch: 128
|
87 |
-
ch_mult: [1, 2, 4, 4]
|
88 |
-
num_res_blocks: 2
|
89 |
-
attn_resolutions: []
|
90 |
-
dropout: 0.0
|
91 |
-
lossconfig:
|
92 |
-
target: torch.nn.Identity
|
93 |
-
|
94 |
-
loss_fn_config:
|
95 |
-
target: sgm.modules.diffusionmodules.loss.StandardDiffusionLoss
|
96 |
-
params:
|
97 |
-
loss_weighting_config:
|
98 |
-
target: sgm.modules.diffusionmodules.loss_weighting.EpsWeighting
|
99 |
-
sigma_sampler_config:
|
100 |
-
target: sgm.modules.diffusionmodules.sigma_sampling.DiscreteSampling
|
101 |
-
params:
|
102 |
-
num_idx: 1000
|
103 |
-
|
104 |
-
discretization_config:
|
105 |
-
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
|
106 |
-
|
107 |
-
sampler_config:
|
108 |
-
target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler
|
109 |
-
params:
|
110 |
-
num_steps: 50
|
111 |
-
|
112 |
-
discretization_config:
|
113 |
-
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
|
114 |
-
|
115 |
-
guider_config:
|
116 |
-
target: sgm.modules.diffusionmodules.guiders.VanillaCFG
|
117 |
-
params:
|
118 |
-
scale: 7.5
|
119 |
-
|
120 |
-
data:
|
121 |
-
target: sgm.data.dataset.StableDataModuleFromConfig
|
122 |
-
params:
|
123 |
-
train:
|
124 |
-
datapipeline:
|
125 |
-
urls:
|
126 |
-
# USER: adapt this path the root of your custom dataset
|
127 |
-
- DATA_PATH
|
128 |
-
pipeline_config:
|
129 |
-
shardshuffle: 10000
|
130 |
-
sample_shuffle: 10000
|
131 |
-
|
132 |
-
|
133 |
-
decoders:
|
134 |
-
- pil
|
135 |
-
|
136 |
-
postprocessors:
|
137 |
-
- target: sdata.mappers.TorchVisionImageTransforms
|
138 |
-
params:
|
139 |
-
key: jpg # USER: you might wanna adapt this for your custom dataset
|
140 |
-
transforms:
|
141 |
-
- target: torchvision.transforms.Resize
|
142 |
-
params:
|
143 |
-
size: 256
|
144 |
-
interpolation: 3
|
145 |
-
- target: torchvision.transforms.ToTensor
|
146 |
-
- target: sdata.mappers.Rescaler
|
147 |
-
# USER: you might wanna use non-default parameters due to your custom dataset
|
148 |
-
- target: sdata.mappers.AddOriginalImageSizeAsTupleAndCropToSquare
|
149 |
-
# USER: you might wanna use non-default parameters due to your custom dataset
|
150 |
-
|
151 |
-
loader:
|
152 |
-
batch_size: 64
|
153 |
-
num_workers: 6
|
154 |
-
|
155 |
-
lightning:
|
156 |
-
modelcheckpoint:
|
157 |
-
params:
|
158 |
-
every_n_train_steps: 5000
|
159 |
-
|
160 |
-
callbacks:
|
161 |
-
metrics_over_trainsteps_checkpoint:
|
162 |
-
params:
|
163 |
-
every_n_train_steps: 25000
|
164 |
-
|
165 |
-
image_logger:
|
166 |
-
target: main.ImageLogger
|
167 |
-
params:
|
168 |
-
disabled: False
|
169 |
-
enable_autocast: False
|
170 |
-
batch_frequency: 1000
|
171 |
-
max_images: 8
|
172 |
-
increase_log_steps: True
|
173 |
-
log_first_step: False
|
174 |
-
log_images_kwargs:
|
175 |
-
use_ema_scope: False
|
176 |
-
N: 8
|
177 |
-
n_rows: 2
|
178 |
-
|
179 |
-
trainer:
|
180 |
-
devices: 0,
|
181 |
-
benchmark: True
|
182 |
-
num_sanity_val_steps: 0
|
183 |
-
accumulate_grad_batches: 1
|
184 |
-
max_epochs: 1000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/inference/sd_2_1.yaml
DELETED
@@ -1,60 +0,0 @@
|
|
1 |
-
model:
|
2 |
-
target: sgm.models.diffusion.DiffusionEngine
|
3 |
-
params:
|
4 |
-
scale_factor: 0.18215
|
5 |
-
disable_first_stage_autocast: True
|
6 |
-
|
7 |
-
denoiser_config:
|
8 |
-
target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiser
|
9 |
-
params:
|
10 |
-
num_idx: 1000
|
11 |
-
|
12 |
-
scaling_config:
|
13 |
-
target: sgm.modules.diffusionmodules.denoiser_scaling.EpsScaling
|
14 |
-
discretization_config:
|
15 |
-
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
|
16 |
-
|
17 |
-
network_config:
|
18 |
-
target: sgm.modules.diffusionmodules.openaimodel.UNetModel
|
19 |
-
params:
|
20 |
-
use_checkpoint: True
|
21 |
-
in_channels: 4
|
22 |
-
out_channels: 4
|
23 |
-
model_channels: 320
|
24 |
-
attention_resolutions: [4, 2, 1]
|
25 |
-
num_res_blocks: 2
|
26 |
-
channel_mult: [1, 2, 4, 4]
|
27 |
-
num_head_channels: 64
|
28 |
-
use_linear_in_transformer: True
|
29 |
-
transformer_depth: 1
|
30 |
-
context_dim: 1024
|
31 |
-
|
32 |
-
conditioner_config:
|
33 |
-
target: sgm.modules.GeneralConditioner
|
34 |
-
params:
|
35 |
-
emb_models:
|
36 |
-
- is_trainable: False
|
37 |
-
input_key: txt
|
38 |
-
target: sgm.modules.encoders.modules.FrozenOpenCLIPEmbedder
|
39 |
-
params:
|
40 |
-
freeze: true
|
41 |
-
layer: penultimate
|
42 |
-
|
43 |
-
first_stage_config:
|
44 |
-
target: sgm.models.autoencoder.AutoencoderKL
|
45 |
-
params:
|
46 |
-
embed_dim: 4
|
47 |
-
monitor: val/rec_loss
|
48 |
-
ddconfig:
|
49 |
-
double_z: true
|
50 |
-
z_channels: 4
|
51 |
-
resolution: 256
|
52 |
-
in_channels: 3
|
53 |
-
out_ch: 3
|
54 |
-
ch: 128
|
55 |
-
ch_mult: [1, 2, 4, 4]
|
56 |
-
num_res_blocks: 2
|
57 |
-
attn_resolutions: []
|
58 |
-
dropout: 0.0
|
59 |
-
lossconfig:
|
60 |
-
target: torch.nn.Identity
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/inference/sd_2_1_768.yaml
DELETED
@@ -1,60 +0,0 @@
|
|
1 |
-
model:
|
2 |
-
target: sgm.models.diffusion.DiffusionEngine
|
3 |
-
params:
|
4 |
-
scale_factor: 0.18215
|
5 |
-
disable_first_stage_autocast: True
|
6 |
-
|
7 |
-
denoiser_config:
|
8 |
-
target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiser
|
9 |
-
params:
|
10 |
-
num_idx: 1000
|
11 |
-
|
12 |
-
scaling_config:
|
13 |
-
target: sgm.modules.diffusionmodules.denoiser_scaling.VScaling
|
14 |
-
discretization_config:
|
15 |
-
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
|
16 |
-
|
17 |
-
network_config:
|
18 |
-
target: sgm.modules.diffusionmodules.openaimodel.UNetModel
|
19 |
-
params:
|
20 |
-
use_checkpoint: True
|
21 |
-
in_channels: 4
|
22 |
-
out_channels: 4
|
23 |
-
model_channels: 320
|
24 |
-
attention_resolutions: [4, 2, 1]
|
25 |
-
num_res_blocks: 2
|
26 |
-
channel_mult: [1, 2, 4, 4]
|
27 |
-
num_head_channels: 64
|
28 |
-
use_linear_in_transformer: True
|
29 |
-
transformer_depth: 1
|
30 |
-
context_dim: 1024
|
31 |
-
|
32 |
-
conditioner_config:
|
33 |
-
target: sgm.modules.GeneralConditioner
|
34 |
-
params:
|
35 |
-
emb_models:
|
36 |
-
- is_trainable: False
|
37 |
-
input_key: txt
|
38 |
-
target: sgm.modules.encoders.modules.FrozenOpenCLIPEmbedder
|
39 |
-
params:
|
40 |
-
freeze: true
|
41 |
-
layer: penultimate
|
42 |
-
|
43 |
-
first_stage_config:
|
44 |
-
target: sgm.models.autoencoder.AutoencoderKL
|
45 |
-
params:
|
46 |
-
embed_dim: 4
|
47 |
-
monitor: val/rec_loss
|
48 |
-
ddconfig:
|
49 |
-
double_z: true
|
50 |
-
z_channels: 4
|
51 |
-
resolution: 256
|
52 |
-
in_channels: 3
|
53 |
-
out_ch: 3
|
54 |
-
ch: 128
|
55 |
-
ch_mult: [1, 2, 4, 4]
|
56 |
-
num_res_blocks: 2
|
57 |
-
attn_resolutions: []
|
58 |
-
dropout: 0.0
|
59 |
-
lossconfig:
|
60 |
-
target: torch.nn.Identity
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/inference/sd_xl_base.yaml
DELETED
@@ -1,93 +0,0 @@
|
|
1 |
-
model:
|
2 |
-
target: sgm.models.diffusion.DiffusionEngine
|
3 |
-
params:
|
4 |
-
scale_factor: 0.13025
|
5 |
-
disable_first_stage_autocast: True
|
6 |
-
|
7 |
-
denoiser_config:
|
8 |
-
target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiser
|
9 |
-
params:
|
10 |
-
num_idx: 1000
|
11 |
-
|
12 |
-
scaling_config:
|
13 |
-
target: sgm.modules.diffusionmodules.denoiser_scaling.EpsScaling
|
14 |
-
discretization_config:
|
15 |
-
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
|
16 |
-
|
17 |
-
network_config:
|
18 |
-
target: sgm.modules.diffusionmodules.openaimodel.UNetModel
|
19 |
-
params:
|
20 |
-
adm_in_channels: 2816
|
21 |
-
num_classes: sequential
|
22 |
-
use_checkpoint: True
|
23 |
-
in_channels: 4
|
24 |
-
out_channels: 4
|
25 |
-
model_channels: 320
|
26 |
-
attention_resolutions: [4, 2]
|
27 |
-
num_res_blocks: 2
|
28 |
-
channel_mult: [1, 2, 4]
|
29 |
-
num_head_channels: 64
|
30 |
-
use_linear_in_transformer: True
|
31 |
-
transformer_depth: [1, 2, 10]
|
32 |
-
context_dim: 2048
|
33 |
-
spatial_transformer_attn_type: softmax-xformers
|
34 |
-
|
35 |
-
conditioner_config:
|
36 |
-
target: sgm.modules.GeneralConditioner
|
37 |
-
params:
|
38 |
-
emb_models:
|
39 |
-
- is_trainable: False
|
40 |
-
input_key: txt
|
41 |
-
target: sgm.modules.encoders.modules.FrozenCLIPEmbedder
|
42 |
-
params:
|
43 |
-
layer: hidden
|
44 |
-
layer_idx: 11
|
45 |
-
|
46 |
-
- is_trainable: False
|
47 |
-
input_key: txt
|
48 |
-
target: sgm.modules.encoders.modules.FrozenOpenCLIPEmbedder2
|
49 |
-
params:
|
50 |
-
arch: ViT-bigG-14
|
51 |
-
version: laion2b_s39b_b160k
|
52 |
-
freeze: True
|
53 |
-
layer: penultimate
|
54 |
-
always_return_pooled: True
|
55 |
-
legacy: False
|
56 |
-
|
57 |
-
- is_trainable: False
|
58 |
-
input_key: original_size_as_tuple
|
59 |
-
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
60 |
-
params:
|
61 |
-
outdim: 256
|
62 |
-
|
63 |
-
- is_trainable: False
|
64 |
-
input_key: crop_coords_top_left
|
65 |
-
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
66 |
-
params:
|
67 |
-
outdim: 256
|
68 |
-
|
69 |
-
- is_trainable: False
|
70 |
-
input_key: target_size_as_tuple
|
71 |
-
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
72 |
-
params:
|
73 |
-
outdim: 256
|
74 |
-
|
75 |
-
first_stage_config:
|
76 |
-
target: sgm.models.autoencoder.AutoencoderKL
|
77 |
-
params:
|
78 |
-
embed_dim: 4
|
79 |
-
monitor: val/rec_loss
|
80 |
-
ddconfig:
|
81 |
-
attn_type: vanilla-xformers
|
82 |
-
double_z: true
|
83 |
-
z_channels: 4
|
84 |
-
resolution: 256
|
85 |
-
in_channels: 3
|
86 |
-
out_ch: 3
|
87 |
-
ch: 128
|
88 |
-
ch_mult: [1, 2, 4, 4]
|
89 |
-
num_res_blocks: 2
|
90 |
-
attn_resolutions: []
|
91 |
-
dropout: 0.0
|
92 |
-
lossconfig:
|
93 |
-
target: torch.nn.Identity
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/inference/sd_xl_refiner.yaml
DELETED
@@ -1,86 +0,0 @@
|
|
1 |
-
model:
|
2 |
-
target: sgm.models.diffusion.DiffusionEngine
|
3 |
-
params:
|
4 |
-
scale_factor: 0.13025
|
5 |
-
disable_first_stage_autocast: True
|
6 |
-
|
7 |
-
denoiser_config:
|
8 |
-
target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiser
|
9 |
-
params:
|
10 |
-
num_idx: 1000
|
11 |
-
|
12 |
-
scaling_config:
|
13 |
-
target: sgm.modules.diffusionmodules.denoiser_scaling.EpsScaling
|
14 |
-
discretization_config:
|
15 |
-
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
|
16 |
-
|
17 |
-
network_config:
|
18 |
-
target: sgm.modules.diffusionmodules.openaimodel.UNetModel
|
19 |
-
params:
|
20 |
-
adm_in_channels: 2560
|
21 |
-
num_classes: sequential
|
22 |
-
use_checkpoint: True
|
23 |
-
in_channels: 4
|
24 |
-
out_channels: 4
|
25 |
-
model_channels: 384
|
26 |
-
attention_resolutions: [4, 2]
|
27 |
-
num_res_blocks: 2
|
28 |
-
channel_mult: [1, 2, 4, 4]
|
29 |
-
num_head_channels: 64
|
30 |
-
use_linear_in_transformer: True
|
31 |
-
transformer_depth: 4
|
32 |
-
context_dim: [1280, 1280, 1280, 1280]
|
33 |
-
spatial_transformer_attn_type: softmax-xformers
|
34 |
-
|
35 |
-
conditioner_config:
|
36 |
-
target: sgm.modules.GeneralConditioner
|
37 |
-
params:
|
38 |
-
emb_models:
|
39 |
-
- is_trainable: False
|
40 |
-
input_key: txt
|
41 |
-
target: sgm.modules.encoders.modules.FrozenOpenCLIPEmbedder2
|
42 |
-
params:
|
43 |
-
arch: ViT-bigG-14
|
44 |
-
version: laion2b_s39b_b160k
|
45 |
-
legacy: False
|
46 |
-
freeze: True
|
47 |
-
layer: penultimate
|
48 |
-
always_return_pooled: True
|
49 |
-
|
50 |
-
- is_trainable: False
|
51 |
-
input_key: original_size_as_tuple
|
52 |
-
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
53 |
-
params:
|
54 |
-
outdim: 256
|
55 |
-
|
56 |
-
- is_trainable: False
|
57 |
-
input_key: crop_coords_top_left
|
58 |
-
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
59 |
-
params:
|
60 |
-
outdim: 256
|
61 |
-
|
62 |
-
- is_trainable: False
|
63 |
-
input_key: aesthetic_score
|
64 |
-
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
65 |
-
params:
|
66 |
-
outdim: 256
|
67 |
-
|
68 |
-
first_stage_config:
|
69 |
-
target: sgm.models.autoencoder.AutoencoderKL
|
70 |
-
params:
|
71 |
-
embed_dim: 4
|
72 |
-
monitor: val/rec_loss
|
73 |
-
ddconfig:
|
74 |
-
attn_type: vanilla-xformers
|
75 |
-
double_z: true
|
76 |
-
z_channels: 4
|
77 |
-
resolution: 256
|
78 |
-
in_channels: 3
|
79 |
-
out_ch: 3
|
80 |
-
ch: 128
|
81 |
-
ch_mult: [1, 2, 4, 4]
|
82 |
-
num_res_blocks: 2
|
83 |
-
attn_resolutions: []
|
84 |
-
dropout: 0.0
|
85 |
-
lossconfig:
|
86 |
-
target: torch.nn.Identity
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/inference/svd.yaml
DELETED
@@ -1,131 +0,0 @@
|
|
1 |
-
model:
|
2 |
-
target: sgm.models.diffusion.DiffusionEngine
|
3 |
-
params:
|
4 |
-
scale_factor: 0.18215
|
5 |
-
disable_first_stage_autocast: True
|
6 |
-
|
7 |
-
denoiser_config:
|
8 |
-
target: sgm.modules.diffusionmodules.denoiser.Denoiser
|
9 |
-
params:
|
10 |
-
scaling_config:
|
11 |
-
target: sgm.modules.diffusionmodules.denoiser_scaling.VScalingWithEDMcNoise
|
12 |
-
|
13 |
-
network_config:
|
14 |
-
target: sgm.modules.diffusionmodules.video_model.VideoUNet
|
15 |
-
params:
|
16 |
-
adm_in_channels: 768
|
17 |
-
num_classes: sequential
|
18 |
-
use_checkpoint: True
|
19 |
-
in_channels: 8
|
20 |
-
out_channels: 4
|
21 |
-
model_channels: 320
|
22 |
-
attention_resolutions: [4, 2, 1]
|
23 |
-
num_res_blocks: 2
|
24 |
-
channel_mult: [1, 2, 4, 4]
|
25 |
-
num_head_channels: 64
|
26 |
-
use_linear_in_transformer: True
|
27 |
-
transformer_depth: 1
|
28 |
-
context_dim: 1024
|
29 |
-
spatial_transformer_attn_type: softmax-xformers
|
30 |
-
extra_ff_mix_layer: True
|
31 |
-
use_spatial_context: True
|
32 |
-
merge_strategy: learned_with_images
|
33 |
-
video_kernel_size: [3, 1, 1]
|
34 |
-
|
35 |
-
conditioner_config:
|
36 |
-
target: sgm.modules.GeneralConditioner
|
37 |
-
params:
|
38 |
-
emb_models:
|
39 |
-
- is_trainable: False
|
40 |
-
input_key: cond_frames_without_noise
|
41 |
-
target: sgm.modules.encoders.modules.FrozenOpenCLIPImagePredictionEmbedder
|
42 |
-
params:
|
43 |
-
n_cond_frames: 1
|
44 |
-
n_copies: 1
|
45 |
-
open_clip_embedding_config:
|
46 |
-
target: sgm.modules.encoders.modules.FrozenOpenCLIPImageEmbedder
|
47 |
-
params:
|
48 |
-
freeze: True
|
49 |
-
|
50 |
-
- input_key: fps_id
|
51 |
-
is_trainable: False
|
52 |
-
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
53 |
-
params:
|
54 |
-
outdim: 256
|
55 |
-
|
56 |
-
- input_key: motion_bucket_id
|
57 |
-
is_trainable: False
|
58 |
-
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
59 |
-
params:
|
60 |
-
outdim: 256
|
61 |
-
|
62 |
-
- input_key: cond_frames
|
63 |
-
is_trainable: False
|
64 |
-
target: sgm.modules.encoders.modules.VideoPredictionEmbedderWithEncoder
|
65 |
-
params:
|
66 |
-
disable_encoder_autocast: True
|
67 |
-
n_cond_frames: 1
|
68 |
-
n_copies: 1
|
69 |
-
is_ae: True
|
70 |
-
encoder_config:
|
71 |
-
target: sgm.models.autoencoder.AutoencoderKLModeOnly
|
72 |
-
params:
|
73 |
-
embed_dim: 4
|
74 |
-
monitor: val/rec_loss
|
75 |
-
ddconfig:
|
76 |
-
attn_type: vanilla-xformers
|
77 |
-
double_z: True
|
78 |
-
z_channels: 4
|
79 |
-
resolution: 256
|
80 |
-
in_channels: 3
|
81 |
-
out_ch: 3
|
82 |
-
ch: 128
|
83 |
-
ch_mult: [1, 2, 4, 4]
|
84 |
-
num_res_blocks: 2
|
85 |
-
attn_resolutions: []
|
86 |
-
dropout: 0.0
|
87 |
-
lossconfig:
|
88 |
-
target: torch.nn.Identity
|
89 |
-
|
90 |
-
- input_key: cond_aug
|
91 |
-
is_trainable: False
|
92 |
-
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
93 |
-
params:
|
94 |
-
outdim: 256
|
95 |
-
|
96 |
-
first_stage_config:
|
97 |
-
target: sgm.models.autoencoder.AutoencodingEngine
|
98 |
-
params:
|
99 |
-
loss_config:
|
100 |
-
target: torch.nn.Identity
|
101 |
-
regularizer_config:
|
102 |
-
target: sgm.modules.autoencoding.regularizers.DiagonalGaussianRegularizer
|
103 |
-
encoder_config:
|
104 |
-
target: sgm.modules.diffusionmodules.model.Encoder
|
105 |
-
params:
|
106 |
-
attn_type: vanilla
|
107 |
-
double_z: True
|
108 |
-
z_channels: 4
|
109 |
-
resolution: 256
|
110 |
-
in_channels: 3
|
111 |
-
out_ch: 3
|
112 |
-
ch: 128
|
113 |
-
ch_mult: [1, 2, 4, 4]
|
114 |
-
num_res_blocks: 2
|
115 |
-
attn_resolutions: []
|
116 |
-
dropout: 0.0
|
117 |
-
decoder_config:
|
118 |
-
target: sgm.modules.autoencoding.temporal_ae.VideoDecoder
|
119 |
-
params:
|
120 |
-
attn_type: vanilla
|
121 |
-
double_z: True
|
122 |
-
z_channels: 4
|
123 |
-
resolution: 256
|
124 |
-
in_channels: 3
|
125 |
-
out_ch: 3
|
126 |
-
ch: 128
|
127 |
-
ch_mult: [1, 2, 4, 4]
|
128 |
-
num_res_blocks: 2
|
129 |
-
attn_resolutions: []
|
130 |
-
dropout: 0.0
|
131 |
-
video_kernel_size: [3, 1, 1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/inference/svd_image_decoder.yaml
DELETED
@@ -1,114 +0,0 @@
|
|
1 |
-
model:
|
2 |
-
target: sgm.models.diffusion.DiffusionEngine
|
3 |
-
params:
|
4 |
-
scale_factor: 0.18215
|
5 |
-
disable_first_stage_autocast: True
|
6 |
-
|
7 |
-
denoiser_config:
|
8 |
-
target: sgm.modules.diffusionmodules.denoiser.Denoiser
|
9 |
-
params:
|
10 |
-
scaling_config:
|
11 |
-
target: sgm.modules.diffusionmodules.denoiser_scaling.VScalingWithEDMcNoise
|
12 |
-
|
13 |
-
network_config:
|
14 |
-
target: sgm.modules.diffusionmodules.video_model.VideoUNet
|
15 |
-
params:
|
16 |
-
adm_in_channels: 768
|
17 |
-
num_classes: sequential
|
18 |
-
use_checkpoint: True
|
19 |
-
in_channels: 8
|
20 |
-
out_channels: 4
|
21 |
-
model_channels: 320
|
22 |
-
attention_resolutions: [4, 2, 1]
|
23 |
-
num_res_blocks: 2
|
24 |
-
channel_mult: [1, 2, 4, 4]
|
25 |
-
num_head_channels: 64
|
26 |
-
use_linear_in_transformer: True
|
27 |
-
transformer_depth: 1
|
28 |
-
context_dim: 1024
|
29 |
-
spatial_transformer_attn_type: softmax-xformers
|
30 |
-
extra_ff_mix_layer: True
|
31 |
-
use_spatial_context: True
|
32 |
-
merge_strategy: learned_with_images
|
33 |
-
video_kernel_size: [3, 1, 1]
|
34 |
-
|
35 |
-
conditioner_config:
|
36 |
-
target: sgm.modules.GeneralConditioner
|
37 |
-
params:
|
38 |
-
emb_models:
|
39 |
-
- is_trainable: False
|
40 |
-
input_key: cond_frames_without_noise
|
41 |
-
target: sgm.modules.encoders.modules.FrozenOpenCLIPImagePredictionEmbedder
|
42 |
-
params:
|
43 |
-
n_cond_frames: 1
|
44 |
-
n_copies: 1
|
45 |
-
open_clip_embedding_config:
|
46 |
-
target: sgm.modules.encoders.modules.FrozenOpenCLIPImageEmbedder
|
47 |
-
params:
|
48 |
-
freeze: True
|
49 |
-
|
50 |
-
- input_key: fps_id
|
51 |
-
is_trainable: False
|
52 |
-
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
53 |
-
params:
|
54 |
-
outdim: 256
|
55 |
-
|
56 |
-
- input_key: motion_bucket_id
|
57 |
-
is_trainable: False
|
58 |
-
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
59 |
-
params:
|
60 |
-
outdim: 256
|
61 |
-
|
62 |
-
- input_key: cond_frames
|
63 |
-
is_trainable: False
|
64 |
-
target: sgm.modules.encoders.modules.VideoPredictionEmbedderWithEncoder
|
65 |
-
params:
|
66 |
-
disable_encoder_autocast: True
|
67 |
-
n_cond_frames: 1
|
68 |
-
n_copies: 1
|
69 |
-
is_ae: True
|
70 |
-
encoder_config:
|
71 |
-
target: sgm.models.autoencoder.AutoencoderKLModeOnly
|
72 |
-
params:
|
73 |
-
embed_dim: 4
|
74 |
-
monitor: val/rec_loss
|
75 |
-
ddconfig:
|
76 |
-
attn_type: vanilla-xformers
|
77 |
-
double_z: True
|
78 |
-
z_channels: 4
|
79 |
-
resolution: 256
|
80 |
-
in_channels: 3
|
81 |
-
out_ch: 3
|
82 |
-
ch: 128
|
83 |
-
ch_mult: [1, 2, 4, 4]
|
84 |
-
num_res_blocks: 2
|
85 |
-
attn_resolutions: []
|
86 |
-
dropout: 0.0
|
87 |
-
lossconfig:
|
88 |
-
target: torch.nn.Identity
|
89 |
-
|
90 |
-
- input_key: cond_aug
|
91 |
-
is_trainable: False
|
92 |
-
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
|
93 |
-
params:
|
94 |
-
outdim: 256
|
95 |
-
|
96 |
-
first_stage_config:
|
97 |
-
target: sgm.models.autoencoder.AutoencoderKL
|
98 |
-
params:
|
99 |
-
embed_dim: 4
|
100 |
-
monitor: val/rec_loss
|
101 |
-
ddconfig:
|
102 |
-
attn_type: vanilla-xformers
|
103 |
-
double_z: True
|
104 |
-
z_channels: 4
|
105 |
-
resolution: 256
|
106 |
-
in_channels: 3
|
107 |
-
out_ch: 3
|
108 |
-
ch: 128
|
109 |
-
ch_mult: [1, 2, 4, 4]
|
110 |
-
num_res_blocks: 2
|
111 |
-
attn_resolutions: []
|
112 |
-
dropout: 0.0
|
113 |
-
lossconfig:
|
114 |
-
target: torch.nn.Identity
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|