multimodalart HF staff commited on
Commit
adcff07
1 Parent(s): 537ebb9

Delete configs

Browse files
configs/.DS_Store DELETED
Binary file (6.15 kB)
 
configs/example_training/autoencoder/kl-f4/imagenet-attnfree-logvar.yaml DELETED
@@ -1,104 +0,0 @@
1
- model:
2
- base_learning_rate: 4.5e-6
3
- target: sgm.models.autoencoder.AutoencodingEngine
4
- params:
5
- input_key: jpg
6
- monitor: val/rec_loss
7
-
8
- loss_config:
9
- target: sgm.modules.autoencoding.losses.GeneralLPIPSWithDiscriminator
10
- params:
11
- perceptual_weight: 0.25
12
- disc_start: 20001
13
- disc_weight: 0.5
14
- learn_logvar: True
15
-
16
- regularization_weights:
17
- kl_loss: 1.0
18
-
19
- regularizer_config:
20
- target: sgm.modules.autoencoding.regularizers.DiagonalGaussianRegularizer
21
-
22
- encoder_config:
23
- target: sgm.modules.diffusionmodules.model.Encoder
24
- params:
25
- attn_type: none
26
- double_z: True
27
- z_channels: 4
28
- resolution: 256
29
- in_channels: 3
30
- out_ch: 3
31
- ch: 128
32
- ch_mult: [1, 2, 4]
33
- num_res_blocks: 4
34
- attn_resolutions: []
35
- dropout: 0.0
36
-
37
- decoder_config:
38
- target: sgm.modules.diffusionmodules.model.Decoder
39
- params: ${model.params.encoder_config.params}
40
-
41
- data:
42
- target: sgm.data.dataset.StableDataModuleFromConfig
43
- params:
44
- train:
45
- datapipeline:
46
- urls:
47
- - DATA-PATH
48
- pipeline_config:
49
- shardshuffle: 10000
50
- sample_shuffle: 10000
51
-
52
- decoders:
53
- - pil
54
-
55
- postprocessors:
56
- - target: sdata.mappers.TorchVisionImageTransforms
57
- params:
58
- key: jpg
59
- transforms:
60
- - target: torchvision.transforms.Resize
61
- params:
62
- size: 256
63
- interpolation: 3
64
- - target: torchvision.transforms.ToTensor
65
- - target: sdata.mappers.Rescaler
66
- - target: sdata.mappers.AddOriginalImageSizeAsTupleAndCropToSquare
67
- params:
68
- h_key: height
69
- w_key: width
70
-
71
- loader:
72
- batch_size: 8
73
- num_workers: 4
74
-
75
-
76
- lightning:
77
- strategy:
78
- target: pytorch_lightning.strategies.DDPStrategy
79
- params:
80
- find_unused_parameters: True
81
-
82
- modelcheckpoint:
83
- params:
84
- every_n_train_steps: 5000
85
-
86
- callbacks:
87
- metrics_over_trainsteps_checkpoint:
88
- params:
89
- every_n_train_steps: 50000
90
-
91
- image_logger:
92
- target: main.ImageLogger
93
- params:
94
- enable_autocast: False
95
- batch_frequency: 1000
96
- max_images: 8
97
- increase_log_steps: True
98
-
99
- trainer:
100
- devices: 0,
101
- limit_val_batches: 50
102
- benchmark: True
103
- accumulate_grad_batches: 1
104
- val_check_interval: 10000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/example_training/autoencoder/kl-f4/imagenet-kl_f8_8chn.yaml DELETED
@@ -1,105 +0,0 @@
1
- model:
2
- base_learning_rate: 4.5e-6
3
- target: sgm.models.autoencoder.AutoencodingEngine
4
- params:
5
- input_key: jpg
6
- monitor: val/loss/rec
7
- disc_start_iter: 0
8
-
9
- encoder_config:
10
- target: sgm.modules.diffusionmodules.model.Encoder
11
- params:
12
- attn_type: vanilla-xformers
13
- double_z: true
14
- z_channels: 8
15
- resolution: 256
16
- in_channels: 3
17
- out_ch: 3
18
- ch: 128
19
- ch_mult: [1, 2, 4, 4]
20
- num_res_blocks: 2
21
- attn_resolutions: []
22
- dropout: 0.0
23
-
24
- decoder_config:
25
- target: sgm.modules.diffusionmodules.model.Decoder
26
- params: ${model.params.encoder_config.params}
27
-
28
- regularizer_config:
29
- target: sgm.modules.autoencoding.regularizers.DiagonalGaussianRegularizer
30
-
31
- loss_config:
32
- target: sgm.modules.autoencoding.losses.GeneralLPIPSWithDiscriminator
33
- params:
34
- perceptual_weight: 0.25
35
- disc_start: 20001
36
- disc_weight: 0.5
37
- learn_logvar: True
38
-
39
- regularization_weights:
40
- kl_loss: 1.0
41
-
42
- data:
43
- target: sgm.data.dataset.StableDataModuleFromConfig
44
- params:
45
- train:
46
- datapipeline:
47
- urls:
48
- - DATA-PATH
49
- pipeline_config:
50
- shardshuffle: 10000
51
- sample_shuffle: 10000
52
-
53
- decoders:
54
- - pil
55
-
56
- postprocessors:
57
- - target: sdata.mappers.TorchVisionImageTransforms
58
- params:
59
- key: jpg
60
- transforms:
61
- - target: torchvision.transforms.Resize
62
- params:
63
- size: 256
64
- interpolation: 3
65
- - target: torchvision.transforms.ToTensor
66
- - target: sdata.mappers.Rescaler
67
- - target: sdata.mappers.AddOriginalImageSizeAsTupleAndCropToSquare
68
- params:
69
- h_key: height
70
- w_key: width
71
-
72
- loader:
73
- batch_size: 8
74
- num_workers: 4
75
-
76
-
77
- lightning:
78
- strategy:
79
- target: pytorch_lightning.strategies.DDPStrategy
80
- params:
81
- find_unused_parameters: True
82
-
83
- modelcheckpoint:
84
- params:
85
- every_n_train_steps: 5000
86
-
87
- callbacks:
88
- metrics_over_trainsteps_checkpoint:
89
- params:
90
- every_n_train_steps: 50000
91
-
92
- image_logger:
93
- target: main.ImageLogger
94
- params:
95
- enable_autocast: False
96
- batch_frequency: 1000
97
- max_images: 8
98
- increase_log_steps: True
99
-
100
- trainer:
101
- devices: 0,
102
- limit_val_batches: 50
103
- benchmark: True
104
- accumulate_grad_batches: 1
105
- val_check_interval: 10000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/example_training/imagenet-f8_cond.yaml DELETED
@@ -1,185 +0,0 @@
1
- model:
2
- base_learning_rate: 1.0e-4
3
- target: sgm.models.diffusion.DiffusionEngine
4
- params:
5
- scale_factor: 0.13025
6
- disable_first_stage_autocast: True
7
- log_keys:
8
- - cls
9
-
10
- scheduler_config:
11
- target: sgm.lr_scheduler.LambdaLinearScheduler
12
- params:
13
- warm_up_steps: [10000]
14
- cycle_lengths: [10000000000000]
15
- f_start: [1.e-6]
16
- f_max: [1.]
17
- f_min: [1.]
18
-
19
- denoiser_config:
20
- target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiser
21
- params:
22
- num_idx: 1000
23
-
24
- scaling_config:
25
- target: sgm.modules.diffusionmodules.denoiser_scaling.EpsScaling
26
- discretization_config:
27
- target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
28
-
29
- network_config:
30
- target: sgm.modules.diffusionmodules.openaimodel.UNetModel
31
- params:
32
- use_checkpoint: True
33
- in_channels: 4
34
- out_channels: 4
35
- model_channels: 256
36
- attention_resolutions: [1, 2, 4]
37
- num_res_blocks: 2
38
- channel_mult: [1, 2, 4]
39
- num_head_channels: 64
40
- num_classes: sequential
41
- adm_in_channels: 1024
42
- transformer_depth: 1
43
- context_dim: 1024
44
- spatial_transformer_attn_type: softmax-xformers
45
-
46
- conditioner_config:
47
- target: sgm.modules.GeneralConditioner
48
- params:
49
- emb_models:
50
- - is_trainable: True
51
- input_key: cls
52
- ucg_rate: 0.2
53
- target: sgm.modules.encoders.modules.ClassEmbedder
54
- params:
55
- add_sequence_dim: True
56
- embed_dim: 1024
57
- n_classes: 1000
58
-
59
- - is_trainable: False
60
- ucg_rate: 0.2
61
- input_key: original_size_as_tuple
62
- target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
63
- params:
64
- outdim: 256
65
-
66
- - is_trainable: False
67
- input_key: crop_coords_top_left
68
- ucg_rate: 0.2
69
- target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
70
- params:
71
- outdim: 256
72
-
73
- first_stage_config:
74
- target: sgm.models.autoencoder.AutoencoderKL
75
- params:
76
- ckpt_path: CKPT_PATH
77
- embed_dim: 4
78
- monitor: val/rec_loss
79
- ddconfig:
80
- attn_type: vanilla-xformers
81
- double_z: true
82
- z_channels: 4
83
- resolution: 256
84
- in_channels: 3
85
- out_ch: 3
86
- ch: 128
87
- ch_mult: [1, 2, 4, 4]
88
- num_res_blocks: 2
89
- attn_resolutions: []
90
- dropout: 0.0
91
- lossconfig:
92
- target: torch.nn.Identity
93
-
94
- loss_fn_config:
95
- target: sgm.modules.diffusionmodules.loss.StandardDiffusionLoss
96
- params:
97
- loss_weighting_config:
98
- target: sgm.modules.diffusionmodules.loss_weighting.EpsWeighting
99
- sigma_sampler_config:
100
- target: sgm.modules.diffusionmodules.sigma_sampling.DiscreteSampling
101
- params:
102
- num_idx: 1000
103
-
104
- discretization_config:
105
- target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
106
-
107
- sampler_config:
108
- target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler
109
- params:
110
- num_steps: 50
111
-
112
- discretization_config:
113
- target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
114
-
115
- guider_config:
116
- target: sgm.modules.diffusionmodules.guiders.VanillaCFG
117
- params:
118
- scale: 5.0
119
-
120
- data:
121
- target: sgm.data.dataset.StableDataModuleFromConfig
122
- params:
123
- train:
124
- datapipeline:
125
- urls:
126
- # USER: adapt this path the root of your custom dataset
127
- - DATA_PATH
128
- pipeline_config:
129
- shardshuffle: 10000
130
- sample_shuffle: 10000 # USER: you might wanna adapt depending on your available RAM
131
-
132
- decoders:
133
- - pil
134
-
135
- postprocessors:
136
- - target: sdata.mappers.TorchVisionImageTransforms
137
- params:
138
- key: jpg # USER: you might wanna adapt this for your custom dataset
139
- transforms:
140
- - target: torchvision.transforms.Resize
141
- params:
142
- size: 256
143
- interpolation: 3
144
- - target: torchvision.transforms.ToTensor
145
- - target: sdata.mappers.Rescaler
146
-
147
- - target: sdata.mappers.AddOriginalImageSizeAsTupleAndCropToSquare
148
- params:
149
- h_key: height # USER: you might wanna adapt this for your custom dataset
150
- w_key: width # USER: you might wanna adapt this for your custom dataset
151
-
152
- loader:
153
- batch_size: 64
154
- num_workers: 6
155
-
156
- lightning:
157
- modelcheckpoint:
158
- params:
159
- every_n_train_steps: 5000
160
-
161
- callbacks:
162
- metrics_over_trainsteps_checkpoint:
163
- params:
164
- every_n_train_steps: 25000
165
-
166
- image_logger:
167
- target: main.ImageLogger
168
- params:
169
- disabled: False
170
- enable_autocast: False
171
- batch_frequency: 1000
172
- max_images: 8
173
- increase_log_steps: True
174
- log_first_step: False
175
- log_images_kwargs:
176
- use_ema_scope: False
177
- N: 8
178
- n_rows: 2
179
-
180
- trainer:
181
- devices: 0,
182
- benchmark: True
183
- num_sanity_val_steps: 0
184
- accumulate_grad_batches: 1
185
- max_epochs: 1000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/example_training/toy/cifar10_cond.yaml DELETED
@@ -1,98 +0,0 @@
1
- model:
2
- base_learning_rate: 1.0e-4
3
- target: sgm.models.diffusion.DiffusionEngine
4
- params:
5
- denoiser_config:
6
- target: sgm.modules.diffusionmodules.denoiser.Denoiser
7
- params:
8
- scaling_config:
9
- target: sgm.modules.diffusionmodules.denoiser_scaling.EDMScaling
10
- params:
11
- sigma_data: 1.0
12
-
13
- network_config:
14
- target: sgm.modules.diffusionmodules.openaimodel.UNetModel
15
- params:
16
- in_channels: 3
17
- out_channels: 3
18
- model_channels: 32
19
- attention_resolutions: []
20
- num_res_blocks: 4
21
- channel_mult: [1, 2, 2]
22
- num_head_channels: 32
23
- num_classes: sequential
24
- adm_in_channels: 128
25
-
26
- conditioner_config:
27
- target: sgm.modules.GeneralConditioner
28
- params:
29
- emb_models:
30
- - is_trainable: True
31
- input_key: cls
32
- ucg_rate: 0.2
33
- target: sgm.modules.encoders.modules.ClassEmbedder
34
- params:
35
- embed_dim: 128
36
- n_classes: 10
37
-
38
- first_stage_config:
39
- target: sgm.models.autoencoder.IdentityFirstStage
40
-
41
- loss_fn_config:
42
- target: sgm.modules.diffusionmodules.loss.StandardDiffusionLoss
43
- params:
44
- loss_weighting_config:
45
- target: sgm.modules.diffusionmodules.loss_weighting.EDMWeighting
46
- params:
47
- sigma_data: 1.0
48
- sigma_sampler_config:
49
- target: sgm.modules.diffusionmodules.sigma_sampling.EDMSampling
50
-
51
- sampler_config:
52
- target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler
53
- params:
54
- num_steps: 50
55
-
56
- discretization_config:
57
- target: sgm.modules.diffusionmodules.discretizer.EDMDiscretization
58
-
59
- guider_config:
60
- target: sgm.modules.diffusionmodules.guiders.VanillaCFG
61
- params:
62
- scale: 3.0
63
-
64
- data:
65
- target: sgm.data.cifar10.CIFAR10Loader
66
- params:
67
- batch_size: 512
68
- num_workers: 1
69
-
70
- lightning:
71
- modelcheckpoint:
72
- params:
73
- every_n_train_steps: 5000
74
-
75
- callbacks:
76
- metrics_over_trainsteps_checkpoint:
77
- params:
78
- every_n_train_steps: 25000
79
-
80
- image_logger:
81
- target: main.ImageLogger
82
- params:
83
- disabled: False
84
- batch_frequency: 1000
85
- max_images: 64
86
- increase_log_steps: True
87
- log_first_step: False
88
- log_images_kwargs:
89
- use_ema_scope: False
90
- N: 64
91
- n_rows: 8
92
-
93
- trainer:
94
- devices: 0,
95
- benchmark: True
96
- num_sanity_val_steps: 0
97
- accumulate_grad_batches: 1
98
- max_epochs: 20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/example_training/toy/mnist.yaml DELETED
@@ -1,79 +0,0 @@
1
- model:
2
- base_learning_rate: 1.0e-4
3
- target: sgm.models.diffusion.DiffusionEngine
4
- params:
5
- denoiser_config:
6
- target: sgm.modules.diffusionmodules.denoiser.Denoiser
7
- params:
8
- scaling_config:
9
- target: sgm.modules.diffusionmodules.denoiser_scaling.EDMScaling
10
- params:
11
- sigma_data: 1.0
12
-
13
- network_config:
14
- target: sgm.modules.diffusionmodules.openaimodel.UNetModel
15
- params:
16
- in_channels: 1
17
- out_channels: 1
18
- model_channels: 32
19
- attention_resolutions: []
20
- num_res_blocks: 4
21
- channel_mult: [1, 2, 2]
22
- num_head_channels: 32
23
-
24
- first_stage_config:
25
- target: sgm.models.autoencoder.IdentityFirstStage
26
-
27
- loss_fn_config:
28
- target: sgm.modules.diffusionmodules.loss.StandardDiffusionLoss
29
- params:
30
- loss_weighting_config:
31
- target: sgm.modules.diffusionmodules.loss_weighting.EDMWeighting
32
- params:
33
- sigma_data: 1.0
34
- sigma_sampler_config:
35
- target: sgm.modules.diffusionmodules.sigma_sampling.EDMSampling
36
-
37
- sampler_config:
38
- target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler
39
- params:
40
- num_steps: 50
41
-
42
- discretization_config:
43
- target: sgm.modules.diffusionmodules.discretizer.EDMDiscretization
44
-
45
- data:
46
- target: sgm.data.mnist.MNISTLoader
47
- params:
48
- batch_size: 512
49
- num_workers: 1
50
-
51
- lightning:
52
- modelcheckpoint:
53
- params:
54
- every_n_train_steps: 5000
55
-
56
- callbacks:
57
- metrics_over_trainsteps_checkpoint:
58
- params:
59
- every_n_train_steps: 25000
60
-
61
- image_logger:
62
- target: main.ImageLogger
63
- params:
64
- disabled: False
65
- batch_frequency: 1000
66
- max_images: 64
67
- increase_log_steps: False
68
- log_first_step: False
69
- log_images_kwargs:
70
- use_ema_scope: False
71
- N: 64
72
- n_rows: 8
73
-
74
- trainer:
75
- devices: 0,
76
- benchmark: True
77
- num_sanity_val_steps: 0
78
- accumulate_grad_batches: 1
79
- max_epochs: 10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/example_training/toy/mnist_cond.yaml DELETED
@@ -1,98 +0,0 @@
1
- model:
2
- base_learning_rate: 1.0e-4
3
- target: sgm.models.diffusion.DiffusionEngine
4
- params:
5
- denoiser_config:
6
- target: sgm.modules.diffusionmodules.denoiser.Denoiser
7
- params:
8
- scaling_config:
9
- target: sgm.modules.diffusionmodules.denoiser_scaling.EDMScaling
10
- params:
11
- sigma_data: 1.0
12
-
13
- network_config:
14
- target: sgm.modules.diffusionmodules.openaimodel.UNetModel
15
- params:
16
- in_channels: 1
17
- out_channels: 1
18
- model_channels: 32
19
- attention_resolutions: []
20
- num_res_blocks: 4
21
- channel_mult: [1, 2, 2]
22
- num_head_channels: 32
23
- num_classes: sequential
24
- adm_in_channels: 128
25
-
26
- conditioner_config:
27
- target: sgm.modules.GeneralConditioner
28
- params:
29
- emb_models:
30
- - is_trainable: True
31
- input_key: cls
32
- ucg_rate: 0.2
33
- target: sgm.modules.encoders.modules.ClassEmbedder
34
- params:
35
- embed_dim: 128
36
- n_classes: 10
37
-
38
- first_stage_config:
39
- target: sgm.models.autoencoder.IdentityFirstStage
40
-
41
- loss_fn_config:
42
- target: sgm.modules.diffusionmodules.loss.StandardDiffusionLoss
43
- params:
44
- loss_weighting_config:
45
- target: sgm.modules.diffusionmodules.loss_weighting.EDMWeighting
46
- params:
47
- sigma_data: 1.0
48
- sigma_sampler_config:
49
- target: sgm.modules.diffusionmodules.sigma_sampling.EDMSampling
50
-
51
- sampler_config:
52
- target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler
53
- params:
54
- num_steps: 50
55
-
56
- discretization_config:
57
- target: sgm.modules.diffusionmodules.discretizer.EDMDiscretization
58
-
59
- guider_config:
60
- target: sgm.modules.diffusionmodules.guiders.VanillaCFG
61
- params:
62
- scale: 3.0
63
-
64
- data:
65
- target: sgm.data.mnist.MNISTLoader
66
- params:
67
- batch_size: 512
68
- num_workers: 1
69
-
70
- lightning:
71
- modelcheckpoint:
72
- params:
73
- every_n_train_steps: 5000
74
-
75
- callbacks:
76
- metrics_over_trainsteps_checkpoint:
77
- params:
78
- every_n_train_steps: 25000
79
-
80
- image_logger:
81
- target: main.ImageLogger
82
- params:
83
- disabled: False
84
- batch_frequency: 1000
85
- max_images: 16
86
- increase_log_steps: True
87
- log_first_step: False
88
- log_images_kwargs:
89
- use_ema_scope: False
90
- N: 16
91
- n_rows: 4
92
-
93
- trainer:
94
- devices: 0,
95
- benchmark: True
96
- num_sanity_val_steps: 0
97
- accumulate_grad_batches: 1
98
- max_epochs: 20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/example_training/toy/mnist_cond_discrete_eps.yaml DELETED
@@ -1,103 +0,0 @@
1
- model:
2
- base_learning_rate: 1.0e-4
3
- target: sgm.models.diffusion.DiffusionEngine
4
- params:
5
- denoiser_config:
6
- target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiser
7
- params:
8
- num_idx: 1000
9
-
10
- scaling_config:
11
- target: sgm.modules.diffusionmodules.denoiser_scaling.EDMScaling
12
- discretization_config:
13
- target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
14
-
15
- network_config:
16
- target: sgm.modules.diffusionmodules.openaimodel.UNetModel
17
- params:
18
- in_channels: 1
19
- out_channels: 1
20
- model_channels: 32
21
- attention_resolutions: []
22
- num_res_blocks: 4
23
- channel_mult: [1, 2, 2]
24
- num_head_channels: 32
25
- num_classes: sequential
26
- adm_in_channels: 128
27
-
28
- conditioner_config:
29
- target: sgm.modules.GeneralConditioner
30
- params:
31
- emb_models:
32
- - is_trainable: True
33
- input_key: cls
34
- ucg_rate: 0.2
35
- target: sgm.modules.encoders.modules.ClassEmbedder
36
- params:
37
- embed_dim: 128
38
- n_classes: 10
39
-
40
- first_stage_config:
41
- target: sgm.models.autoencoder.IdentityFirstStage
42
-
43
- loss_fn_config:
44
- target: sgm.modules.diffusionmodules.loss.StandardDiffusionLoss
45
- params:
46
- loss_weighting_config:
47
- target: sgm.modules.diffusionmodules.loss_weighting.EDMWeighting
48
- sigma_sampler_config:
49
- target: sgm.modules.diffusionmodules.sigma_sampling.DiscreteSampling
50
- params:
51
- num_idx: 1000
52
-
53
- discretization_config:
54
- target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
55
-
56
- sampler_config:
57
- target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler
58
- params:
59
- num_steps: 50
60
-
61
- discretization_config:
62
- target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
63
-
64
- guider_config:
65
- target: sgm.modules.diffusionmodules.guiders.VanillaCFG
66
- params:
67
- scale: 5.0
68
-
69
- data:
70
- target: sgm.data.mnist.MNISTLoader
71
- params:
72
- batch_size: 512
73
- num_workers: 1
74
-
75
- lightning:
76
- modelcheckpoint:
77
- params:
78
- every_n_train_steps: 5000
79
-
80
- callbacks:
81
- metrics_over_trainsteps_checkpoint:
82
- params:
83
- every_n_train_steps: 25000
84
-
85
- image_logger:
86
- target: main.ImageLogger
87
- params:
88
- disabled: False
89
- batch_frequency: 1000
90
- max_images: 16
91
- increase_log_steps: True
92
- log_first_step: False
93
- log_images_kwargs:
94
- use_ema_scope: False
95
- N: 16
96
- n_rows: 4
97
-
98
- trainer:
99
- devices: 0,
100
- benchmark: True
101
- num_sanity_val_steps: 0
102
- accumulate_grad_batches: 1
103
- max_epochs: 20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/example_training/toy/mnist_cond_l1_loss.yaml DELETED
@@ -1,99 +0,0 @@
1
- model:
2
- base_learning_rate: 1.0e-4
3
- target: sgm.models.diffusion.DiffusionEngine
4
- params:
5
- denoiser_config:
6
- target: sgm.modules.diffusionmodules.denoiser.Denoiser
7
- params:
8
- scaling_config:
9
- target: sgm.modules.diffusionmodules.denoiser_scaling.EDMScaling
10
- params:
11
- sigma_data: 1.0
12
-
13
- network_config:
14
- target: sgm.modules.diffusionmodules.openaimodel.UNetModel
15
- params:
16
- in_channels: 1
17
- out_channels: 1
18
- model_channels: 32
19
- attention_resolutions: []
20
- num_res_blocks: 4
21
- channel_mult: [1, 2, 2]
22
- num_head_channels: 32
23
- num_classes: sequential
24
- adm_in_channels: 128
25
-
26
- conditioner_config:
27
- target: sgm.modules.GeneralConditioner
28
- params:
29
- emb_models:
30
- - is_trainable: True
31
- input_key: cls
32
- ucg_rate: 0.2
33
- target: sgm.modules.encoders.modules.ClassEmbedder
34
- params:
35
- embed_dim: 128
36
- n_classes: 10
37
-
38
- first_stage_config:
39
- target: sgm.models.autoencoder.IdentityFirstStage
40
-
41
- loss_fn_config:
42
- target: sgm.modules.diffusionmodules.loss.StandardDiffusionLoss
43
- params:
44
- loss_type: l1
45
- loss_weighting_config:
46
- target: sgm.modules.diffusionmodules.loss_weighting.EDMWeighting
47
- params:
48
- sigma_data: 1.0
49
- sigma_sampler_config:
50
- target: sgm.modules.diffusionmodules.sigma_sampling.EDMSampling
51
-
52
- sampler_config:
53
- target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler
54
- params:
55
- num_steps: 50
56
-
57
- discretization_config:
58
- target: sgm.modules.diffusionmodules.discretizer.EDMDiscretization
59
-
60
- guider_config:
61
- target: sgm.modules.diffusionmodules.guiders.VanillaCFG
62
- params:
63
- scale: 3.0
64
-
65
- data:
66
- target: sgm.data.mnist.MNISTLoader
67
- params:
68
- batch_size: 512
69
- num_workers: 1
70
-
71
- lightning:
72
- modelcheckpoint:
73
- params:
74
- every_n_train_steps: 5000
75
-
76
- callbacks:
77
- metrics_over_trainsteps_checkpoint:
78
- params:
79
- every_n_train_steps: 25000
80
-
81
- image_logger:
82
- target: main.ImageLogger
83
- params:
84
- disabled: False
85
- batch_frequency: 1000
86
- max_images: 64
87
- increase_log_steps: True
88
- log_first_step: False
89
- log_images_kwargs:
90
- use_ema_scope: False
91
- N: 64
92
- n_rows: 8
93
-
94
- trainer:
95
- devices: 0,
96
- benchmark: True
97
- num_sanity_val_steps: 0
98
- accumulate_grad_batches: 1
99
- max_epochs: 20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/example_training/toy/mnist_cond_with_ema.yaml DELETED
@@ -1,100 +0,0 @@
1
- model:
2
- base_learning_rate: 1.0e-4
3
- target: sgm.models.diffusion.DiffusionEngine
4
- params:
5
- use_ema: True
6
-
7
- denoiser_config:
8
- target: sgm.modules.diffusionmodules.denoiser.Denoiser
9
- params:
10
- scaling_config:
11
- target: sgm.modules.diffusionmodules.denoiser_scaling.EDMScaling
12
- params:
13
- sigma_data: 1.0
14
-
15
- network_config:
16
- target: sgm.modules.diffusionmodules.openaimodel.UNetModel
17
- params:
18
- in_channels: 1
19
- out_channels: 1
20
- model_channels: 32
21
- attention_resolutions: []
22
- num_res_blocks: 4
23
- channel_mult: [1, 2, 2]
24
- num_head_channels: 32
25
- num_classes: sequential
26
- adm_in_channels: 128
27
-
28
- conditioner_config:
29
- target: sgm.modules.GeneralConditioner
30
- params:
31
- emb_models:
32
- - is_trainable: True
33
- input_key: cls
34
- ucg_rate: 0.2
35
- target: sgm.modules.encoders.modules.ClassEmbedder
36
- params:
37
- embed_dim: 128
38
- n_classes: 10
39
-
40
- first_stage_config:
41
- target: sgm.models.autoencoder.IdentityFirstStage
42
-
43
- loss_fn_config:
44
- target: sgm.modules.diffusionmodules.loss.StandardDiffusionLoss
45
- params:
46
- loss_weighting_config:
47
- target: sgm.modules.diffusionmodules.loss_weighting.EDMWeighting
48
- params:
49
- sigma_data: 1.0
50
- sigma_sampler_config:
51
- target: sgm.modules.diffusionmodules.sigma_sampling.EDMSampling
52
-
53
- sampler_config:
54
- target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler
55
- params:
56
- num_steps: 50
57
-
58
- discretization_config:
59
- target: sgm.modules.diffusionmodules.discretizer.EDMDiscretization
60
-
61
- guider_config:
62
- target: sgm.modules.diffusionmodules.guiders.VanillaCFG
63
- params:
64
- scale: 3.0
65
-
66
- data:
67
- target: sgm.data.mnist.MNISTLoader
68
- params:
69
- batch_size: 512
70
- num_workers: 1
71
-
72
- lightning:
73
- modelcheckpoint:
74
- params:
75
- every_n_train_steps: 5000
76
-
77
- callbacks:
78
- metrics_over_trainsteps_checkpoint:
79
- params:
80
- every_n_train_steps: 25000
81
-
82
- image_logger:
83
- target: main.ImageLogger
84
- params:
85
- disabled: False
86
- batch_frequency: 1000
87
- max_images: 64
88
- increase_log_steps: True
89
- log_first_step: False
90
- log_images_kwargs:
91
- use_ema_scope: False
92
- N: 64
93
- n_rows: 8
94
-
95
- trainer:
96
- devices: 0,
97
- benchmark: True
98
- num_sanity_val_steps: 0
99
- accumulate_grad_batches: 1
100
- max_epochs: 20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/example_training/txt2img-clipl-legacy-ucg-training.yaml DELETED
@@ -1,182 +0,0 @@
1
- model:
2
- base_learning_rate: 1.0e-4
3
- target: sgm.models.diffusion.DiffusionEngine
4
- params:
5
- scale_factor: 0.13025
6
- disable_first_stage_autocast: True
7
- log_keys:
8
- - txt
9
-
10
- scheduler_config:
11
- target: sgm.lr_scheduler.LambdaLinearScheduler
12
- params:
13
- warm_up_steps: [10000]
14
- cycle_lengths: [10000000000000]
15
- f_start: [1.e-6]
16
- f_max: [1.]
17
- f_min: [1.]
18
-
19
- denoiser_config:
20
- target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiser
21
- params:
22
- num_idx: 1000
23
-
24
- scaling_config:
25
- target: sgm.modules.diffusionmodules.denoiser_scaling.EpsScaling
26
- discretization_config:
27
- target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
28
-
29
- network_config:
30
- target: sgm.modules.diffusionmodules.openaimodel.UNetModel
31
- params:
32
- use_checkpoint: True
33
- in_channels: 4
34
- out_channels: 4
35
- model_channels: 320
36
- attention_resolutions: [1, 2, 4]
37
- num_res_blocks: 2
38
- channel_mult: [1, 2, 4, 4]
39
- num_head_channels: 64
40
- num_classes: sequential
41
- adm_in_channels: 1792
42
- num_heads: 1
43
- transformer_depth: 1
44
- context_dim: 768
45
- spatial_transformer_attn_type: softmax-xformers
46
-
47
- conditioner_config:
48
- target: sgm.modules.GeneralConditioner
49
- params:
50
- emb_models:
51
- - is_trainable: True
52
- input_key: txt
53
- ucg_rate: 0.1
54
- legacy_ucg_value: ""
55
- target: sgm.modules.encoders.modules.FrozenCLIPEmbedder
56
- params:
57
- always_return_pooled: True
58
-
59
- - is_trainable: False
60
- ucg_rate: 0.1
61
- input_key: original_size_as_tuple
62
- target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
63
- params:
64
- outdim: 256
65
-
66
- - is_trainable: False
67
- input_key: crop_coords_top_left
68
- ucg_rate: 0.1
69
- target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
70
- params:
71
- outdim: 256
72
-
73
- first_stage_config:
74
- target: sgm.models.autoencoder.AutoencoderKL
75
- params:
76
- ckpt_path: CKPT_PATH
77
- embed_dim: 4
78
- monitor: val/rec_loss
79
- ddconfig:
80
- attn_type: vanilla-xformers
81
- double_z: true
82
- z_channels: 4
83
- resolution: 256
84
- in_channels: 3
85
- out_ch: 3
86
- ch: 128
87
- ch_mult: [ 1, 2, 4, 4 ]
88
- num_res_blocks: 2
89
- attn_resolutions: [ ]
90
- dropout: 0.0
91
- lossconfig:
92
- target: torch.nn.Identity
93
-
94
- loss_fn_config:
95
- target: sgm.modules.diffusionmodules.loss.StandardDiffusionLoss
96
- params:
97
- loss_weighting_config:
98
- target: sgm.modules.diffusionmodules.loss_weighting.EpsWeighting
99
- sigma_sampler_config:
100
- target: sgm.modules.diffusionmodules.sigma_sampling.DiscreteSampling
101
- params:
102
- num_idx: 1000
103
-
104
- discretization_config:
105
- target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
106
-
107
- sampler_config:
108
- target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler
109
- params:
110
- num_steps: 50
111
-
112
- discretization_config:
113
- target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
114
-
115
- guider_config:
116
- target: sgm.modules.diffusionmodules.guiders.VanillaCFG
117
- params:
118
- scale: 7.5
119
-
120
- data:
121
- target: sgm.data.dataset.StableDataModuleFromConfig
122
- params:
123
- train:
124
- datapipeline:
125
- urls:
126
- # USER: adapt this path the root of your custom dataset
127
- - DATA_PATH
128
- pipeline_config:
129
- shardshuffle: 10000
130
- sample_shuffle: 10000 # USER: you might wanna adapt depending on your available RAM
131
-
132
- decoders:
133
- - pil
134
-
135
- postprocessors:
136
- - target: sdata.mappers.TorchVisionImageTransforms
137
- params:
138
- key: jpg # USER: you might wanna adapt this for your custom dataset
139
- transforms:
140
- - target: torchvision.transforms.Resize
141
- params:
142
- size: 256
143
- interpolation: 3
144
- - target: torchvision.transforms.ToTensor
145
- - target: sdata.mappers.Rescaler
146
- - target: sdata.mappers.AddOriginalImageSizeAsTupleAndCropToSquare
147
- # USER: you might wanna use non-default parameters due to your custom dataset
148
-
149
- loader:
150
- batch_size: 64
151
- num_workers: 6
152
-
153
- lightning:
154
- modelcheckpoint:
155
- params:
156
- every_n_train_steps: 5000
157
-
158
- callbacks:
159
- metrics_over_trainsteps_checkpoint:
160
- params:
161
- every_n_train_steps: 25000
162
-
163
- image_logger:
164
- target: main.ImageLogger
165
- params:
166
- disabled: False
167
- enable_autocast: False
168
- batch_frequency: 1000
169
- max_images: 8
170
- increase_log_steps: True
171
- log_first_step: False
172
- log_images_kwargs:
173
- use_ema_scope: False
174
- N: 8
175
- n_rows: 2
176
-
177
- trainer:
178
- devices: 0,
179
- benchmark: True
180
- num_sanity_val_steps: 0
181
- accumulate_grad_batches: 1
182
- max_epochs: 1000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/example_training/txt2img-clipl.yaml DELETED
@@ -1,184 +0,0 @@
1
- model:
2
- base_learning_rate: 1.0e-4
3
- target: sgm.models.diffusion.DiffusionEngine
4
- params:
5
- scale_factor: 0.13025
6
- disable_first_stage_autocast: True
7
- log_keys:
8
- - txt
9
-
10
- scheduler_config:
11
- target: sgm.lr_scheduler.LambdaLinearScheduler
12
- params:
13
- warm_up_steps: [10000]
14
- cycle_lengths: [10000000000000]
15
- f_start: [1.e-6]
16
- f_max: [1.]
17
- f_min: [1.]
18
-
19
- denoiser_config:
20
- target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiser
21
- params:
22
- num_idx: 1000
23
-
24
- scaling_config:
25
- target: sgm.modules.diffusionmodules.denoiser_scaling.EpsScaling
26
- discretization_config:
27
- target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
28
-
29
- network_config:
30
- target: sgm.modules.diffusionmodules.openaimodel.UNetModel
31
- params:
32
- use_checkpoint: True
33
- in_channels: 4
34
- out_channels: 4
35
- model_channels: 320
36
- attention_resolutions: [1, 2, 4]
37
- num_res_blocks: 2
38
- channel_mult: [1, 2, 4, 4]
39
- num_head_channels: 64
40
- num_classes: sequential
41
- adm_in_channels: 1792
42
- num_heads: 1
43
- transformer_depth: 1
44
- context_dim: 768
45
- spatial_transformer_attn_type: softmax-xformers
46
-
47
- conditioner_config:
48
- target: sgm.modules.GeneralConditioner
49
- params:
50
- emb_models:
51
- - is_trainable: True
52
- input_key: txt
53
- ucg_rate: 0.1
54
- legacy_ucg_value: ""
55
- target: sgm.modules.encoders.modules.FrozenCLIPEmbedder
56
- params:
57
- always_return_pooled: True
58
-
59
- - is_trainable: False
60
- ucg_rate: 0.1
61
- input_key: original_size_as_tuple
62
- target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
63
- params:
64
- outdim: 256
65
-
66
- - is_trainable: False
67
- input_key: crop_coords_top_left
68
- ucg_rate: 0.1
69
- target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
70
- params:
71
- outdim: 256
72
-
73
- first_stage_config:
74
- target: sgm.models.autoencoder.AutoencoderKL
75
- params:
76
- ckpt_path: CKPT_PATH
77
- embed_dim: 4
78
- monitor: val/rec_loss
79
- ddconfig:
80
- attn_type: vanilla-xformers
81
- double_z: true
82
- z_channels: 4
83
- resolution: 256
84
- in_channels: 3
85
- out_ch: 3
86
- ch: 128
87
- ch_mult: [1, 2, 4, 4]
88
- num_res_blocks: 2
89
- attn_resolutions: []
90
- dropout: 0.0
91
- lossconfig:
92
- target: torch.nn.Identity
93
-
94
- loss_fn_config:
95
- target: sgm.modules.diffusionmodules.loss.StandardDiffusionLoss
96
- params:
97
- loss_weighting_config:
98
- target: sgm.modules.diffusionmodules.loss_weighting.EpsWeighting
99
- sigma_sampler_config:
100
- target: sgm.modules.diffusionmodules.sigma_sampling.DiscreteSampling
101
- params:
102
- num_idx: 1000
103
-
104
- discretization_config:
105
- target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
106
-
107
- sampler_config:
108
- target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler
109
- params:
110
- num_steps: 50
111
-
112
- discretization_config:
113
- target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
114
-
115
- guider_config:
116
- target: sgm.modules.diffusionmodules.guiders.VanillaCFG
117
- params:
118
- scale: 7.5
119
-
120
- data:
121
- target: sgm.data.dataset.StableDataModuleFromConfig
122
- params:
123
- train:
124
- datapipeline:
125
- urls:
126
- # USER: adapt this path the root of your custom dataset
127
- - DATA_PATH
128
- pipeline_config:
129
- shardshuffle: 10000
130
- sample_shuffle: 10000
131
-
132
-
133
- decoders:
134
- - pil
135
-
136
- postprocessors:
137
- - target: sdata.mappers.TorchVisionImageTransforms
138
- params:
139
- key: jpg # USER: you might wanna adapt this for your custom dataset
140
- transforms:
141
- - target: torchvision.transforms.Resize
142
- params:
143
- size: 256
144
- interpolation: 3
145
- - target: torchvision.transforms.ToTensor
146
- - target: sdata.mappers.Rescaler
147
- # USER: you might wanna use non-default parameters due to your custom dataset
148
- - target: sdata.mappers.AddOriginalImageSizeAsTupleAndCropToSquare
149
- # USER: you might wanna use non-default parameters due to your custom dataset
150
-
151
- loader:
152
- batch_size: 64
153
- num_workers: 6
154
-
155
- lightning:
156
- modelcheckpoint:
157
- params:
158
- every_n_train_steps: 5000
159
-
160
- callbacks:
161
- metrics_over_trainsteps_checkpoint:
162
- params:
163
- every_n_train_steps: 25000
164
-
165
- image_logger:
166
- target: main.ImageLogger
167
- params:
168
- disabled: False
169
- enable_autocast: False
170
- batch_frequency: 1000
171
- max_images: 8
172
- increase_log_steps: True
173
- log_first_step: False
174
- log_images_kwargs:
175
- use_ema_scope: False
176
- N: 8
177
- n_rows: 2
178
-
179
- trainer:
180
- devices: 0,
181
- benchmark: True
182
- num_sanity_val_steps: 0
183
- accumulate_grad_batches: 1
184
- max_epochs: 1000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/inference/sd_2_1.yaml DELETED
@@ -1,60 +0,0 @@
1
- model:
2
- target: sgm.models.diffusion.DiffusionEngine
3
- params:
4
- scale_factor: 0.18215
5
- disable_first_stage_autocast: True
6
-
7
- denoiser_config:
8
- target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiser
9
- params:
10
- num_idx: 1000
11
-
12
- scaling_config:
13
- target: sgm.modules.diffusionmodules.denoiser_scaling.EpsScaling
14
- discretization_config:
15
- target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
16
-
17
- network_config:
18
- target: sgm.modules.diffusionmodules.openaimodel.UNetModel
19
- params:
20
- use_checkpoint: True
21
- in_channels: 4
22
- out_channels: 4
23
- model_channels: 320
24
- attention_resolutions: [4, 2, 1]
25
- num_res_blocks: 2
26
- channel_mult: [1, 2, 4, 4]
27
- num_head_channels: 64
28
- use_linear_in_transformer: True
29
- transformer_depth: 1
30
- context_dim: 1024
31
-
32
- conditioner_config:
33
- target: sgm.modules.GeneralConditioner
34
- params:
35
- emb_models:
36
- - is_trainable: False
37
- input_key: txt
38
- target: sgm.modules.encoders.modules.FrozenOpenCLIPEmbedder
39
- params:
40
- freeze: true
41
- layer: penultimate
42
-
43
- first_stage_config:
44
- target: sgm.models.autoencoder.AutoencoderKL
45
- params:
46
- embed_dim: 4
47
- monitor: val/rec_loss
48
- ddconfig:
49
- double_z: true
50
- z_channels: 4
51
- resolution: 256
52
- in_channels: 3
53
- out_ch: 3
54
- ch: 128
55
- ch_mult: [1, 2, 4, 4]
56
- num_res_blocks: 2
57
- attn_resolutions: []
58
- dropout: 0.0
59
- lossconfig:
60
- target: torch.nn.Identity
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/inference/sd_2_1_768.yaml DELETED
@@ -1,60 +0,0 @@
1
- model:
2
- target: sgm.models.diffusion.DiffusionEngine
3
- params:
4
- scale_factor: 0.18215
5
- disable_first_stage_autocast: True
6
-
7
- denoiser_config:
8
- target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiser
9
- params:
10
- num_idx: 1000
11
-
12
- scaling_config:
13
- target: sgm.modules.diffusionmodules.denoiser_scaling.VScaling
14
- discretization_config:
15
- target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
16
-
17
- network_config:
18
- target: sgm.modules.diffusionmodules.openaimodel.UNetModel
19
- params:
20
- use_checkpoint: True
21
- in_channels: 4
22
- out_channels: 4
23
- model_channels: 320
24
- attention_resolutions: [4, 2, 1]
25
- num_res_blocks: 2
26
- channel_mult: [1, 2, 4, 4]
27
- num_head_channels: 64
28
- use_linear_in_transformer: True
29
- transformer_depth: 1
30
- context_dim: 1024
31
-
32
- conditioner_config:
33
- target: sgm.modules.GeneralConditioner
34
- params:
35
- emb_models:
36
- - is_trainable: False
37
- input_key: txt
38
- target: sgm.modules.encoders.modules.FrozenOpenCLIPEmbedder
39
- params:
40
- freeze: true
41
- layer: penultimate
42
-
43
- first_stage_config:
44
- target: sgm.models.autoencoder.AutoencoderKL
45
- params:
46
- embed_dim: 4
47
- monitor: val/rec_loss
48
- ddconfig:
49
- double_z: true
50
- z_channels: 4
51
- resolution: 256
52
- in_channels: 3
53
- out_ch: 3
54
- ch: 128
55
- ch_mult: [1, 2, 4, 4]
56
- num_res_blocks: 2
57
- attn_resolutions: []
58
- dropout: 0.0
59
- lossconfig:
60
- target: torch.nn.Identity
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/inference/sd_xl_base.yaml DELETED
@@ -1,93 +0,0 @@
1
- model:
2
- target: sgm.models.diffusion.DiffusionEngine
3
- params:
4
- scale_factor: 0.13025
5
- disable_first_stage_autocast: True
6
-
7
- denoiser_config:
8
- target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiser
9
- params:
10
- num_idx: 1000
11
-
12
- scaling_config:
13
- target: sgm.modules.diffusionmodules.denoiser_scaling.EpsScaling
14
- discretization_config:
15
- target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
16
-
17
- network_config:
18
- target: sgm.modules.diffusionmodules.openaimodel.UNetModel
19
- params:
20
- adm_in_channels: 2816
21
- num_classes: sequential
22
- use_checkpoint: True
23
- in_channels: 4
24
- out_channels: 4
25
- model_channels: 320
26
- attention_resolutions: [4, 2]
27
- num_res_blocks: 2
28
- channel_mult: [1, 2, 4]
29
- num_head_channels: 64
30
- use_linear_in_transformer: True
31
- transformer_depth: [1, 2, 10]
32
- context_dim: 2048
33
- spatial_transformer_attn_type: softmax-xformers
34
-
35
- conditioner_config:
36
- target: sgm.modules.GeneralConditioner
37
- params:
38
- emb_models:
39
- - is_trainable: False
40
- input_key: txt
41
- target: sgm.modules.encoders.modules.FrozenCLIPEmbedder
42
- params:
43
- layer: hidden
44
- layer_idx: 11
45
-
46
- - is_trainable: False
47
- input_key: txt
48
- target: sgm.modules.encoders.modules.FrozenOpenCLIPEmbedder2
49
- params:
50
- arch: ViT-bigG-14
51
- version: laion2b_s39b_b160k
52
- freeze: True
53
- layer: penultimate
54
- always_return_pooled: True
55
- legacy: False
56
-
57
- - is_trainable: False
58
- input_key: original_size_as_tuple
59
- target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
60
- params:
61
- outdim: 256
62
-
63
- - is_trainable: False
64
- input_key: crop_coords_top_left
65
- target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
66
- params:
67
- outdim: 256
68
-
69
- - is_trainable: False
70
- input_key: target_size_as_tuple
71
- target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
72
- params:
73
- outdim: 256
74
-
75
- first_stage_config:
76
- target: sgm.models.autoencoder.AutoencoderKL
77
- params:
78
- embed_dim: 4
79
- monitor: val/rec_loss
80
- ddconfig:
81
- attn_type: vanilla-xformers
82
- double_z: true
83
- z_channels: 4
84
- resolution: 256
85
- in_channels: 3
86
- out_ch: 3
87
- ch: 128
88
- ch_mult: [1, 2, 4, 4]
89
- num_res_blocks: 2
90
- attn_resolutions: []
91
- dropout: 0.0
92
- lossconfig:
93
- target: torch.nn.Identity
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/inference/sd_xl_refiner.yaml DELETED
@@ -1,86 +0,0 @@
1
- model:
2
- target: sgm.models.diffusion.DiffusionEngine
3
- params:
4
- scale_factor: 0.13025
5
- disable_first_stage_autocast: True
6
-
7
- denoiser_config:
8
- target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiser
9
- params:
10
- num_idx: 1000
11
-
12
- scaling_config:
13
- target: sgm.modules.diffusionmodules.denoiser_scaling.EpsScaling
14
- discretization_config:
15
- target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
16
-
17
- network_config:
18
- target: sgm.modules.diffusionmodules.openaimodel.UNetModel
19
- params:
20
- adm_in_channels: 2560
21
- num_classes: sequential
22
- use_checkpoint: True
23
- in_channels: 4
24
- out_channels: 4
25
- model_channels: 384
26
- attention_resolutions: [4, 2]
27
- num_res_blocks: 2
28
- channel_mult: [1, 2, 4, 4]
29
- num_head_channels: 64
30
- use_linear_in_transformer: True
31
- transformer_depth: 4
32
- context_dim: [1280, 1280, 1280, 1280]
33
- spatial_transformer_attn_type: softmax-xformers
34
-
35
- conditioner_config:
36
- target: sgm.modules.GeneralConditioner
37
- params:
38
- emb_models:
39
- - is_trainable: False
40
- input_key: txt
41
- target: sgm.modules.encoders.modules.FrozenOpenCLIPEmbedder2
42
- params:
43
- arch: ViT-bigG-14
44
- version: laion2b_s39b_b160k
45
- legacy: False
46
- freeze: True
47
- layer: penultimate
48
- always_return_pooled: True
49
-
50
- - is_trainable: False
51
- input_key: original_size_as_tuple
52
- target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
53
- params:
54
- outdim: 256
55
-
56
- - is_trainable: False
57
- input_key: crop_coords_top_left
58
- target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
59
- params:
60
- outdim: 256
61
-
62
- - is_trainable: False
63
- input_key: aesthetic_score
64
- target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
65
- params:
66
- outdim: 256
67
-
68
- first_stage_config:
69
- target: sgm.models.autoencoder.AutoencoderKL
70
- params:
71
- embed_dim: 4
72
- monitor: val/rec_loss
73
- ddconfig:
74
- attn_type: vanilla-xformers
75
- double_z: true
76
- z_channels: 4
77
- resolution: 256
78
- in_channels: 3
79
- out_ch: 3
80
- ch: 128
81
- ch_mult: [1, 2, 4, 4]
82
- num_res_blocks: 2
83
- attn_resolutions: []
84
- dropout: 0.0
85
- lossconfig:
86
- target: torch.nn.Identity
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/inference/svd.yaml DELETED
@@ -1,131 +0,0 @@
1
- model:
2
- target: sgm.models.diffusion.DiffusionEngine
3
- params:
4
- scale_factor: 0.18215
5
- disable_first_stage_autocast: True
6
-
7
- denoiser_config:
8
- target: sgm.modules.diffusionmodules.denoiser.Denoiser
9
- params:
10
- scaling_config:
11
- target: sgm.modules.diffusionmodules.denoiser_scaling.VScalingWithEDMcNoise
12
-
13
- network_config:
14
- target: sgm.modules.diffusionmodules.video_model.VideoUNet
15
- params:
16
- adm_in_channels: 768
17
- num_classes: sequential
18
- use_checkpoint: True
19
- in_channels: 8
20
- out_channels: 4
21
- model_channels: 320
22
- attention_resolutions: [4, 2, 1]
23
- num_res_blocks: 2
24
- channel_mult: [1, 2, 4, 4]
25
- num_head_channels: 64
26
- use_linear_in_transformer: True
27
- transformer_depth: 1
28
- context_dim: 1024
29
- spatial_transformer_attn_type: softmax-xformers
30
- extra_ff_mix_layer: True
31
- use_spatial_context: True
32
- merge_strategy: learned_with_images
33
- video_kernel_size: [3, 1, 1]
34
-
35
- conditioner_config:
36
- target: sgm.modules.GeneralConditioner
37
- params:
38
- emb_models:
39
- - is_trainable: False
40
- input_key: cond_frames_without_noise
41
- target: sgm.modules.encoders.modules.FrozenOpenCLIPImagePredictionEmbedder
42
- params:
43
- n_cond_frames: 1
44
- n_copies: 1
45
- open_clip_embedding_config:
46
- target: sgm.modules.encoders.modules.FrozenOpenCLIPImageEmbedder
47
- params:
48
- freeze: True
49
-
50
- - input_key: fps_id
51
- is_trainable: False
52
- target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
53
- params:
54
- outdim: 256
55
-
56
- - input_key: motion_bucket_id
57
- is_trainable: False
58
- target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
59
- params:
60
- outdim: 256
61
-
62
- - input_key: cond_frames
63
- is_trainable: False
64
- target: sgm.modules.encoders.modules.VideoPredictionEmbedderWithEncoder
65
- params:
66
- disable_encoder_autocast: True
67
- n_cond_frames: 1
68
- n_copies: 1
69
- is_ae: True
70
- encoder_config:
71
- target: sgm.models.autoencoder.AutoencoderKLModeOnly
72
- params:
73
- embed_dim: 4
74
- monitor: val/rec_loss
75
- ddconfig:
76
- attn_type: vanilla-xformers
77
- double_z: True
78
- z_channels: 4
79
- resolution: 256
80
- in_channels: 3
81
- out_ch: 3
82
- ch: 128
83
- ch_mult: [1, 2, 4, 4]
84
- num_res_blocks: 2
85
- attn_resolutions: []
86
- dropout: 0.0
87
- lossconfig:
88
- target: torch.nn.Identity
89
-
90
- - input_key: cond_aug
91
- is_trainable: False
92
- target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
93
- params:
94
- outdim: 256
95
-
96
- first_stage_config:
97
- target: sgm.models.autoencoder.AutoencodingEngine
98
- params:
99
- loss_config:
100
- target: torch.nn.Identity
101
- regularizer_config:
102
- target: sgm.modules.autoencoding.regularizers.DiagonalGaussianRegularizer
103
- encoder_config:
104
- target: sgm.modules.diffusionmodules.model.Encoder
105
- params:
106
- attn_type: vanilla
107
- double_z: True
108
- z_channels: 4
109
- resolution: 256
110
- in_channels: 3
111
- out_ch: 3
112
- ch: 128
113
- ch_mult: [1, 2, 4, 4]
114
- num_res_blocks: 2
115
- attn_resolutions: []
116
- dropout: 0.0
117
- decoder_config:
118
- target: sgm.modules.autoencoding.temporal_ae.VideoDecoder
119
- params:
120
- attn_type: vanilla
121
- double_z: True
122
- z_channels: 4
123
- resolution: 256
124
- in_channels: 3
125
- out_ch: 3
126
- ch: 128
127
- ch_mult: [1, 2, 4, 4]
128
- num_res_blocks: 2
129
- attn_resolutions: []
130
- dropout: 0.0
131
- video_kernel_size: [3, 1, 1]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configs/inference/svd_image_decoder.yaml DELETED
@@ -1,114 +0,0 @@
1
- model:
2
- target: sgm.models.diffusion.DiffusionEngine
3
- params:
4
- scale_factor: 0.18215
5
- disable_first_stage_autocast: True
6
-
7
- denoiser_config:
8
- target: sgm.modules.diffusionmodules.denoiser.Denoiser
9
- params:
10
- scaling_config:
11
- target: sgm.modules.diffusionmodules.denoiser_scaling.VScalingWithEDMcNoise
12
-
13
- network_config:
14
- target: sgm.modules.diffusionmodules.video_model.VideoUNet
15
- params:
16
- adm_in_channels: 768
17
- num_classes: sequential
18
- use_checkpoint: True
19
- in_channels: 8
20
- out_channels: 4
21
- model_channels: 320
22
- attention_resolutions: [4, 2, 1]
23
- num_res_blocks: 2
24
- channel_mult: [1, 2, 4, 4]
25
- num_head_channels: 64
26
- use_linear_in_transformer: True
27
- transformer_depth: 1
28
- context_dim: 1024
29
- spatial_transformer_attn_type: softmax-xformers
30
- extra_ff_mix_layer: True
31
- use_spatial_context: True
32
- merge_strategy: learned_with_images
33
- video_kernel_size: [3, 1, 1]
34
-
35
- conditioner_config:
36
- target: sgm.modules.GeneralConditioner
37
- params:
38
- emb_models:
39
- - is_trainable: False
40
- input_key: cond_frames_without_noise
41
- target: sgm.modules.encoders.modules.FrozenOpenCLIPImagePredictionEmbedder
42
- params:
43
- n_cond_frames: 1
44
- n_copies: 1
45
- open_clip_embedding_config:
46
- target: sgm.modules.encoders.modules.FrozenOpenCLIPImageEmbedder
47
- params:
48
- freeze: True
49
-
50
- - input_key: fps_id
51
- is_trainable: False
52
- target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
53
- params:
54
- outdim: 256
55
-
56
- - input_key: motion_bucket_id
57
- is_trainable: False
58
- target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
59
- params:
60
- outdim: 256
61
-
62
- - input_key: cond_frames
63
- is_trainable: False
64
- target: sgm.modules.encoders.modules.VideoPredictionEmbedderWithEncoder
65
- params:
66
- disable_encoder_autocast: True
67
- n_cond_frames: 1
68
- n_copies: 1
69
- is_ae: True
70
- encoder_config:
71
- target: sgm.models.autoencoder.AutoencoderKLModeOnly
72
- params:
73
- embed_dim: 4
74
- monitor: val/rec_loss
75
- ddconfig:
76
- attn_type: vanilla-xformers
77
- double_z: True
78
- z_channels: 4
79
- resolution: 256
80
- in_channels: 3
81
- out_ch: 3
82
- ch: 128
83
- ch_mult: [1, 2, 4, 4]
84
- num_res_blocks: 2
85
- attn_resolutions: []
86
- dropout: 0.0
87
- lossconfig:
88
- target: torch.nn.Identity
89
-
90
- - input_key: cond_aug
91
- is_trainable: False
92
- target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
93
- params:
94
- outdim: 256
95
-
96
- first_stage_config:
97
- target: sgm.models.autoencoder.AutoencoderKL
98
- params:
99
- embed_dim: 4
100
- monitor: val/rec_loss
101
- ddconfig:
102
- attn_type: vanilla-xformers
103
- double_z: True
104
- z_channels: 4
105
- resolution: 256
106
- in_channels: 3
107
- out_ch: 3
108
- ch: 128
109
- ch_mult: [1, 2, 4, 4]
110
- num_res_blocks: 2
111
- attn_resolutions: []
112
- dropout: 0.0
113
- lossconfig:
114
- target: torch.nn.Identity