vqgan / app.py
apolinario's picture
revert back to 2.9.4
34f173c
raw
history blame
96.7 kB
import sys
import argparse
import math
from pathlib import Path
import sys
import pandas as pd
from base64 import b64encode
from omegaconf import OmegaConf
from PIL import Image
from taming.models import cond_transformer, vqgan
import torch
from os.path import exists as path_exists
torch.cuda.empty_cache()
from torch import nn
import torch.optim as optim
from torch import optim
from torch.nn import functional as F
from torchvision import transforms
from torchvision.transforms import functional as TF
import torchvision.transforms as T
from git.repo.base import Repo
if not (path_exists(f"CLIP")):
Repo.clone_from("https://github.com/openai/CLIP", "CLIP")
from CLIP import clip
import gradio as gr
import kornia.augmentation as K
import numpy as np
import subprocess
import imageio
from PIL import ImageFile, Image
import time
import base64
import hashlib
from PIL.PngImagePlugin import PngImageFile, PngInfo
import json
import urllib.request
from random import randint
from pathvalidate import sanitize_filename
from huggingface_hub import hf_hub_download
import shortuuid
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("Using device:", device)
vqgan_model = hf_hub_download(repo_id="boris/vqgan_f16_16384", filename="model.ckpt")
vqgan_config = hf_hub_download(repo_id="boris/vqgan_f16_16384", filename="config.yaml")
def load_vqgan_model(config_path, checkpoint_path):
config = OmegaConf.load(config_path)
if config.model.target == "taming.models.vqgan.VQModel":
model = vqgan.VQModel(**config.model.params)
model.eval().requires_grad_(False)
model.init_from_ckpt(checkpoint_path)
elif config.model.target == "taming.models.cond_transformer.Net2NetTransformer":
parent_model = cond_transformer.Net2NetTransformer(**config.model.params)
parent_model.eval().requires_grad_(False)
parent_model.init_from_ckpt(checkpoint_path)
model = parent_model.first_stage_model
elif config.model.target == "taming.models.vqgan.GumbelVQ":
model = vqgan.GumbelVQ(**config.model.params)
# print(config.model.params)
model.eval().requires_grad_(False)
model.init_from_ckpt(checkpoint_path)
else:
raise ValueError(f"unknown model type: {config.model.target}")
del model.loss
return model
model = load_vqgan_model(vqgan_config, vqgan_model).to(device)
perceptor = (
clip.load("ViT-B/32", jit=False)[0]
.eval()
.requires_grad_(False)
.to(device)
)
def run_all(user_input, width, height, template, num_steps, flavor):
import random
#if uploaded_file is not None:
#uploaded_folder = f"{DefaultPaths.root_path}/uploaded"
#if not path_exists(uploaded_folder):
# os.makedirs(uploaded_folder)
#image_data = uploaded_file.read()
#f = open(f"{uploaded_folder}/{uploaded_file.name}", "wb")
#f.write(image_data)
#f.close()
#image_path = f"{uploaded_folder}/{uploaded_file.name}"
#pass
#else:
image_path = None
url = shortuuid.uuid()
args2 = argparse.Namespace(
prompt=user_input,
seed=int(random.randint(0, 2147483647)),
sizex=width,
sizey=height,
flavor=flavor,
iterations=num_steps,
mse=True,
update=100,
template=template,
vqgan_model='ImageNet 16384',
seed_image=image_path,
image_file=f"{url}.png",
#frame_dir=intermediary_folder,
)
if args2.seed is not None:
import torch
import numpy as np
np.random.seed(args2.seed)
import random
random.seed(args2.seed)
# next line forces deterministic random values, but causes other issues with resampling (uncomment to see)
torch.manual_seed(args2.seed)
torch.cuda.manual_seed(args2.seed)
torch.cuda.manual_seed_all(args2.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("Using device:", device)
def noise_gen(shape, octaves=5):
n, c, h, w = shape
noise = torch.zeros([n, c, 1, 1])
max_octaves = min(octaves, math.log(h) / math.log(2), math.log(w) / math.log(2))
for i in reversed(range(max_octaves)):
h_cur, w_cur = h // 2**i, w // 2**i
noise = F.interpolate(
noise, (h_cur, w_cur), mode="bicubic", align_corners=False
)
noise += torch.randn([n, c, h_cur, w_cur]) / 5
return noise
def sinc(x):
return torch.where(
x != 0, torch.sin(math.pi * x) / (math.pi * x), x.new_ones([])
)
def lanczos(x, a):
cond = torch.logical_and(-a < x, x < a)
out = torch.where(cond, sinc(x) * sinc(x / a), x.new_zeros([]))
return out / out.sum()
def ramp(ratio, width):
n = math.ceil(width / ratio + 1)
out = torch.empty([n])
cur = 0
for i in range(out.shape[0]):
out[i] = cur
cur += ratio
return torch.cat([-out[1:].flip([0]), out])[1:-1]
def resample(input, size, align_corners=True):
n, c, h, w = input.shape
dh, dw = size
input = input.view([n * c, 1, h, w])
if dh < h:
kernel_h = lanczos(ramp(dh / h, 2), 2).to(input.device, input.dtype)
pad_h = (kernel_h.shape[0] - 1) // 2
input = F.pad(input, (0, 0, pad_h, pad_h), "reflect")
input = F.conv2d(input, kernel_h[None, None, :, None])
if dw < w:
kernel_w = lanczos(ramp(dw / w, 2), 2).to(input.device, input.dtype)
pad_w = (kernel_w.shape[0] - 1) // 2
input = F.pad(input, (pad_w, pad_w, 0, 0), "reflect")
input = F.conv2d(input, kernel_w[None, None, None, :])
input = input.view([n, c, h, w])
return F.interpolate(input, size, mode="bicubic", align_corners=align_corners)
def lerp(a, b, f):
return (a * (1.0 - f)) + (b * f)
class ReplaceGrad(torch.autograd.Function):
@staticmethod
def forward(ctx, x_forward, x_backward):
ctx.shape = x_backward.shape
return x_forward
@staticmethod
def backward(ctx, grad_in):
return None, grad_in.sum_to_size(ctx.shape)
replace_grad = ReplaceGrad.apply
class ClampWithGrad(torch.autograd.Function):
@staticmethod
def forward(ctx, input, min, max):
ctx.min = min
ctx.max = max
ctx.save_for_backward(input)
return input.clamp(min, max)
@staticmethod
def backward(ctx, grad_in):
(input,) = ctx.saved_tensors
return (
grad_in * (grad_in * (input - input.clamp(ctx.min, ctx.max)) >= 0),
None,
None,
)
clamp_with_grad = ClampWithGrad.apply
def vector_quantize(x, codebook):
d = (
x.pow(2).sum(dim=-1, keepdim=True)
+ codebook.pow(2).sum(dim=1)
- 2 * x @ codebook.T
)
indices = d.argmin(-1)
x_q = F.one_hot(indices, codebook.shape[0]).to(d.dtype) @ codebook
return replace_grad(x_q, x)
class Prompt(nn.Module):
def __init__(self, embed, weight=1.0, stop=float("-inf")):
super().__init__()
self.register_buffer("embed", embed)
self.register_buffer("weight", torch.as_tensor(weight))
self.register_buffer("stop", torch.as_tensor(stop))
def forward(self, input):
input_normed = F.normalize(input.unsqueeze(1), dim=2)
embed_normed = F.normalize(self.embed.unsqueeze(0), dim=2)
dists = (
input_normed.sub(embed_normed).norm(dim=2).div(2).arcsin().pow(2).mul(2)
)
dists = dists * self.weight.sign()
return (
self.weight.abs()
* replace_grad(dists, torch.maximum(dists, self.stop)).mean()
)
def parse_prompt(prompt):
if prompt.startswith("http://") or prompt.startswith("https://"):
vals = prompt.rsplit(":", 1)
vals = [vals[0] + ":" + vals[1], *vals[2:]]
else:
vals = prompt.rsplit(":", 1)
vals = vals + ["", "1", "-inf"][len(vals) :]
return vals[0], float(vals[1]), float(vals[2])
def one_sided_clip_loss(input, target, labels=None, logit_scale=100):
input_normed = F.normalize(input, dim=-1)
target_normed = F.normalize(target, dim=-1)
logits = input_normed @ target_normed.T * logit_scale
if labels is None:
labels = torch.arange(len(input), device=logits.device)
return F.cross_entropy(logits, labels)
class EMATensor(nn.Module):
"""implmeneted by Katherine Crowson"""
def __init__(self, tensor, decay):
super().__init__()
self.tensor = nn.Parameter(tensor)
self.register_buffer("biased", torch.zeros_like(tensor))
self.register_buffer("average", torch.zeros_like(tensor))
self.decay = decay
self.register_buffer("accum", torch.tensor(1.0))
self.update()
@torch.no_grad()
def update(self):
if not self.training:
raise RuntimeError("update() should only be called during training")
self.accum *= self.decay
self.biased.mul_(self.decay)
self.biased.add_((1 - self.decay) * self.tensor)
self.average.copy_(self.biased)
self.average.div_(1 - self.accum)
def forward(self):
if self.training:
return self.tensor
return self.average
class MakeCutoutsCustom(nn.Module):
def __init__(self, cut_size, cutn, cut_pow, augs):
super().__init__()
self.cut_size = cut_size
# tqdm.write(f"cut size: {self.cut_size}")
self.cutn = cutn
self.cut_pow = cut_pow
self.noise_fac = 0.1
self.av_pool = nn.AdaptiveAvgPool2d((self.cut_size, self.cut_size))
self.max_pool = nn.AdaptiveMaxPool2d((self.cut_size, self.cut_size))
self.augs = nn.Sequential(
K.RandomHorizontalFlip(p=Random_Horizontal_Flip),
K.RandomSharpness(Random_Sharpness, p=Random_Sharpness_P),
K.RandomGaussianBlur(
(Random_Gaussian_Blur),
(Random_Gaussian_Blur_W, Random_Gaussian_Blur_W),
p=Random_Gaussian_Blur_P,
),
K.RandomGaussianNoise(p=Random_Gaussian_Noise_P),
K.RandomElasticTransform(
kernel_size=(
Random_Elastic_Transform_Kernel_Size_W,
Random_Elastic_Transform_Kernel_Size_H,
),
sigma=(Random_Elastic_Transform_Sigma),
p=Random_Elastic_Transform_P,
),
K.RandomAffine(
degrees=Random_Affine_Degrees,
translate=Random_Affine_Translate,
p=Random_Affine_P,
padding_mode="border",
),
K.RandomPerspective(Random_Perspective, p=Random_Perspective_P),
K.ColorJitter(
hue=Color_Jitter_Hue,
saturation=Color_Jitter_Saturation,
p=Color_Jitter_P,
),
)
# K.RandomErasing((0.1, 0.7), (0.3, 1/0.4), same_on_batch=True, p=0.2),)
def set_cut_pow(self, cut_pow):
self.cut_pow = cut_pow
def forward(self, input):
sideY, sideX = input.shape[2:4]
max_size = min(sideX, sideY)
min_size = min(sideX, sideY, self.cut_size)
cutouts = []
cutouts_full = []
noise_fac = 0.1
min_size_width = min(sideX, sideY)
lower_bound = float(self.cut_size / min_size_width)
for ii in range(self.cutn):
# size = int(torch.rand([])**self.cut_pow * (max_size - min_size) + min_size)
randsize = (
torch.zeros(
1,
)
.normal_(mean=0.8, std=0.3)
.clip(lower_bound, 1.0)
)
size_mult = randsize**self.cut_pow
size = int(
min_size_width * (size_mult.clip(lower_bound, 1.0))
) # replace .5 with a result for 224 the default large size is .95
# size = int(min_size_width*torch.zeros(1,).normal_(mean=.9, std=.3).clip(lower_bound, .95)) # replace .5 with a result for 224 the default large size is .95
offsetx = torch.randint(0, sideX - size + 1, ())
offsety = torch.randint(0, sideY - size + 1, ())
cutout = input[:, :, offsety : offsety + size, offsetx : offsetx + size]
cutouts.append(resample(cutout, (self.cut_size, self.cut_size)))
cutouts = torch.cat(cutouts, dim=0)
cutouts = clamp_with_grad(cutouts, 0, 1)
# if args.use_augs:
cutouts = self.augs(cutouts)
if self.noise_fac:
facs = cutouts.new_empty([cutouts.shape[0], 1, 1, 1]).uniform_(
0, self.noise_fac
)
cutouts = cutouts + facs * torch.randn_like(cutouts)
return cutouts
class MakeCutoutsJuu(nn.Module):
def __init__(self, cut_size, cutn, cut_pow, augs):
super().__init__()
self.cut_size = cut_size
self.cutn = cutn
self.cut_pow = cut_pow
self.augs = nn.Sequential(
# K.RandomGaussianNoise(mean=0.0, std=0.5, p=0.1),
K.RandomHorizontalFlip(p=0.5),
K.RandomSharpness(0.3, p=0.4),
K.RandomAffine(degrees=30, translate=0.1, p=0.8, padding_mode="border"),
K.RandomPerspective(0.2, p=0.4),
K.ColorJitter(hue=0.01, saturation=0.01, p=0.7),
K.RandomGrayscale(p=0.1),
)
self.noise_fac = 0.1
def forward(self, input):
sideY, sideX = input.shape[2:4]
max_size = min(sideX, sideY)
min_size = min(sideX, sideY, self.cut_size)
cutouts = []
for _ in range(self.cutn):
size = int(
torch.rand([]) ** self.cut_pow * (max_size - min_size) + min_size
)
offsetx = torch.randint(0, sideX - size + 1, ())
offsety = torch.randint(0, sideY - size + 1, ())
cutout = input[:, :, offsety : offsety + size, offsetx : offsetx + size]
cutouts.append(resample(cutout, (self.cut_size, self.cut_size)))
batch = self.augs(torch.cat(cutouts, dim=0))
if self.noise_fac:
facs = batch.new_empty([self.cutn, 1, 1, 1]).uniform_(0, self.noise_fac)
batch = batch + facs * torch.randn_like(batch)
return batch
class MakeCutoutsMoth(nn.Module):
def __init__(self, cut_size, cutn, cut_pow, augs, skip_augs=False):
super().__init__()
self.cut_size = cut_size
self.cutn = cutn
self.cut_pow = cut_pow
self.skip_augs = skip_augs
self.augs = T.Compose(
[
T.RandomHorizontalFlip(p=0.5),
T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
T.RandomAffine(degrees=15, translate=(0.1, 0.1)),
T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
T.RandomPerspective(distortion_scale=0.4, p=0.7),
T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
T.RandomGrayscale(p=0.15),
T.Lambda(lambda x: x + torch.randn_like(x) * 0.01),
# T.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1),
]
)
def forward(self, input):
input = T.Pad(input.shape[2] // 4, fill=0)(input)
sideY, sideX = input.shape[2:4]
max_size = min(sideX, sideY)
cutouts = []
for ch in range(cutn):
if ch > cutn - cutn // 4:
cutout = input.clone()
else:
size = int(
max_size
* torch.zeros(
1,
)
.normal_(mean=0.8, std=0.3)
.clip(float(self.cut_size / max_size), 1.0)
)
offsetx = torch.randint(0, abs(sideX - size + 1), ())
offsety = torch.randint(0, abs(sideY - size + 1), ())
cutout = input[
:, :, offsety : offsety + size, offsetx : offsetx + size
]
if not self.skip_augs:
cutout = self.augs(cutout)
cutouts.append(resample(cutout, (self.cut_size, self.cut_size)))
del cutout
cutouts = torch.cat(cutouts, dim=0)
return cutouts
class MakeCutoutsAaron(nn.Module):
def __init__(self, cut_size, cutn, cut_pow, augs):
super().__init__()
self.cut_size = cut_size
self.cutn = cutn
self.cut_pow = cut_pow
self.augs = augs
self.av_pool = nn.AdaptiveAvgPool2d((self.cut_size, self.cut_size))
self.max_pool = nn.AdaptiveMaxPool2d((self.cut_size, self.cut_size))
def set_cut_pow(self, cut_pow):
self.cut_pow = cut_pow
def forward(self, input):
sideY, sideX = input.shape[2:4]
max_size = min(sideX, sideY)
min_size = min(sideX, sideY, self.cut_size)
cutouts = []
cutouts_full = []
min_size_width = min(sideX, sideY)
lower_bound = float(self.cut_size / min_size_width)
for ii in range(self.cutn):
size = int(
min_size_width
* torch.zeros(
1,
)
.normal_(mean=0.8, std=0.3)
.clip(lower_bound, 1.0)
) # replace .5 with a result for 224 the default large size is .95
offsetx = torch.randint(0, sideX - size + 1, ())
offsety = torch.randint(0, sideY - size + 1, ())
cutout = input[:, :, offsety : offsety + size, offsetx : offsetx + size]
cutouts.append(resample(cutout, (self.cut_size, self.cut_size)))
cutouts = torch.cat(cutouts, dim=0)
return clamp_with_grad(cutouts, 0, 1)
class MakeCutoutsCumin(nn.Module):
# from https://colab.research.google.com/drive/1ZAus_gn2RhTZWzOWUpPERNC0Q8OhZRTZ
def __init__(self, cut_size, cutn, cut_pow, augs):
super().__init__()
self.cut_size = cut_size
# tqdm.write(f"cut size: {self.cut_size}")
self.cutn = cutn
self.cut_pow = cut_pow
self.noise_fac = 0.1
self.av_pool = nn.AdaptiveAvgPool2d((self.cut_size, self.cut_size))
self.max_pool = nn.AdaptiveMaxPool2d((self.cut_size, self.cut_size))
self.augs = nn.Sequential(
# K.RandomHorizontalFlip(p=0.5),
# K.RandomSharpness(0.3,p=0.4),
# K.RandomGaussianBlur((3,3),(10.5,10.5),p=0.2),
# K.RandomGaussianNoise(p=0.5),
# K.RandomElasticTransform(kernel_size=(33, 33), sigma=(7,7), p=0.2),
K.RandomAffine(degrees=15, translate=0.1, p=0.7, padding_mode="border"),
K.RandomPerspective(0.7, p=0.7),
K.ColorJitter(hue=0.1, saturation=0.1, p=0.7),
K.RandomErasing((0.1, 0.4), (0.3, 1 / 0.3), same_on_batch=True, p=0.7),
)
def set_cut_pow(self, cut_pow):
self.cut_pow = cut_pow
def forward(self, input):
sideY, sideX = input.shape[2:4]
max_size = min(sideX, sideY)
min_size = min(sideX, sideY, self.cut_size)
cutouts = []
cutouts_full = []
noise_fac = 0.1
min_size_width = min(sideX, sideY)
lower_bound = float(self.cut_size / min_size_width)
for ii in range(self.cutn):
# size = int(torch.rand([])**self.cut_pow * (max_size - min_size) + min_size)
randsize = (
torch.zeros(
1,
)
.normal_(mean=0.8, std=0.3)
.clip(lower_bound, 1.0)
)
size_mult = randsize**self.cut_pow
size = int(
min_size_width * (size_mult.clip(lower_bound, 1.0))
) # replace .5 with a result for 224 the default large size is .95
# size = int(min_size_width*torch.zeros(1,).normal_(mean=.9, std=.3).clip(lower_bound, .95)) # replace .5 with a result for 224 the default large size is .95
offsetx = torch.randint(0, sideX - size + 1, ())
offsety = torch.randint(0, sideY - size + 1, ())
cutout = input[:, :, offsety : offsety + size, offsetx : offsetx + size]
cutouts.append(resample(cutout, (self.cut_size, self.cut_size)))
cutouts = torch.cat(cutouts, dim=0)
cutouts = clamp_with_grad(cutouts, 0, 1)
# if args.use_augs:
cutouts = self.augs(cutouts)
if self.noise_fac:
facs = cutouts.new_empty([cutouts.shape[0], 1, 1, 1]).uniform_(
0, self.noise_fac
)
cutouts = cutouts + facs * torch.randn_like(cutouts)
return cutouts
class MakeCutoutsHolywater(nn.Module):
def __init__(self, cut_size, cutn, cut_pow, augs):
super().__init__()
self.cut_size = cut_size
# tqdm.write(f"cut size: {self.cut_size}")
self.cutn = cutn
self.cut_pow = cut_pow
self.noise_fac = 0.1
self.av_pool = nn.AdaptiveAvgPool2d((self.cut_size, self.cut_size))
self.max_pool = nn.AdaptiveMaxPool2d((self.cut_size, self.cut_size))
self.augs = nn.Sequential(
# K.RandomGaussianNoise(mean=0.0, std=0.5, p=0.1),
K.RandomHorizontalFlip(p=0.5),
K.RandomSharpness(0.3, p=0.4),
K.RandomAffine(degrees=30, translate=0.1, p=0.8, padding_mode="border"),
K.RandomPerspective(0.2, p=0.4),
K.ColorJitter(hue=0.01, saturation=0.01, p=0.7),
K.RandomGrayscale(p=0.1),
)
def set_cut_pow(self, cut_pow):
self.cut_pow = cut_pow
def forward(self, input):
sideY, sideX = input.shape[2:4]
max_size = min(sideX, sideY)
min_size = min(sideX, sideY, self.cut_size)
cutouts = []
cutouts_full = []
noise_fac = 0.1
min_size_width = min(sideX, sideY)
lower_bound = float(self.cut_size / min_size_width)
for ii in range(self.cutn):
size = int(
torch.rand([]) ** self.cut_pow * (max_size - min_size) + min_size
)
randsize = (
torch.zeros(
1,
)
.normal_(mean=0.8, std=0.3)
.clip(lower_bound, 1.0)
)
size_mult = randsize**self.cut_pow * ii + size
size1 = int(
(min_size_width) * (size_mult.clip(lower_bound, 1.0))
) # replace .5 with a result for 224 the default large size is .95
size2 = int(
(min_size_width)
* torch.zeros(
1,
)
.normal_(mean=0.9, std=0.3)
.clip(lower_bound, 0.95)
) # replace .5 with a result for 224 the default large size is .95
offsetx = torch.randint(0, sideX - size1 + 1, ())
offsety = torch.randint(0, sideY - size2 + 1, ())
cutout = input[
:, :, offsety : offsety + size2 + ii, offsetx : offsetx + size1 + ii
]
cutouts.append(resample(cutout, (self.cut_size, self.cut_size)))
cutouts = torch.cat(cutouts, dim=0)
cutouts = clamp_with_grad(cutouts, 0, 1)
cutouts = self.augs(cutouts)
facs = cutouts.new_empty([cutouts.shape[0], 1, 1, 1]).uniform_(
0, self.noise_fac
)
cutouts = cutouts + facs * torch.randn_like(cutouts)
return cutouts
class MakeCutoutsOldHolywater(nn.Module):
def __init__(self, cut_size, cutn, cut_pow, augs):
super().__init__()
self.cut_size = cut_size
# tqdm.write(f"cut size: {self.cut_size}")
self.cutn = cutn
self.cut_pow = cut_pow
self.noise_fac = 0.1
self.av_pool = nn.AdaptiveAvgPool2d((self.cut_size, self.cut_size))
self.max_pool = nn.AdaptiveMaxPool2d((self.cut_size, self.cut_size))
self.augs = nn.Sequential(
# K.RandomHorizontalFlip(p=0.5),
# K.RandomSharpness(0.3,p=0.4),
# K.RandomGaussianBlur((3,3),(10.5,10.5),p=0.2),
# K.RandomGaussianNoise(p=0.5),
# K.RandomElasticTransform(kernel_size=(33, 33), sigma=(7,7), p=0.2),
K.RandomAffine(
degrees=180, translate=0.5, p=0.2, padding_mode="border"
),
K.RandomPerspective(0.6, p=0.9),
K.ColorJitter(hue=0.03, saturation=0.01, p=0.1),
K.RandomErasing((0.1, 0.7), (0.3, 1 / 0.4), same_on_batch=True, p=0.2),
)
def set_cut_pow(self, cut_pow):
self.cut_pow = cut_pow
def forward(self, input):
sideY, sideX = input.shape[2:4]
max_size = min(sideX, sideY)
min_size = min(sideX, sideY, self.cut_size)
cutouts = []
cutouts_full = []
noise_fac = 0.1
min_size_width = min(sideX, sideY)
lower_bound = float(self.cut_size / min_size_width)
for ii in range(self.cutn):
# size = int(torch.rand([])**self.cut_pow * (max_size - min_size) + min_size)
randsize = (
torch.zeros(
1,
)
.normal_(mean=0.8, std=0.3)
.clip(lower_bound, 1.0)
)
size_mult = randsize**self.cut_pow
size = int(
min_size_width * (size_mult.clip(lower_bound, 1.0))
) # replace .5 with a result for 224 the default large size is .95
# size = int(min_size_width*torch.zeros(1,).normal_(mean=.9, std=.3).clip(lower_bound, .95)) # replace .5 with a result for 224 the default large size is .95
offsetx = torch.randint(0, sideX - size + 1, ())
offsety = torch.randint(0, sideY - size + 1, ())
cutout = input[:, :, offsety : offsety + size, offsetx : offsetx + size]
cutouts.append(resample(cutout, (self.cut_size, self.cut_size)))
cutouts = torch.cat(cutouts, dim=0)
cutouts = clamp_with_grad(cutouts, 0, 1)
# if args.use_augs:
cutouts = self.augs(cutouts)
if self.noise_fac:
facs = cutouts.new_empty([cutouts.shape[0], 1, 1, 1]).uniform_(
0, self.noise_fac
)
cutouts = cutouts + facs * torch.randn_like(cutouts)
return cutouts
class MakeCutoutsGinger(nn.Module):
def __init__(self, cut_size, cutn, cut_pow, augs):
super().__init__()
self.cut_size = cut_size
# tqdm.write(f"cut size: {self.cut_size}")
self.cutn = cutn
self.cut_pow = cut_pow
self.noise_fac = 0.1
self.av_pool = nn.AdaptiveAvgPool2d((self.cut_size, self.cut_size))
self.max_pool = nn.AdaptiveMaxPool2d((self.cut_size, self.cut_size))
self.augs = augs
"""
nn.Sequential(
K.RandomHorizontalFlip(p=0.5),
K.RandomSharpness(0.3,p=0.4),
K.RandomGaussianBlur((3,3),(10.5,10.5),p=0.2),
K.RandomGaussianNoise(p=0.5),
K.RandomElasticTransform(kernel_size=(33, 33), sigma=(7,7), p=0.2),
K.RandomAffine(degrees=30, translate=0.1, p=0.8, padding_mode='border'), # padding_mode=2
K.RandomPerspective(0.2,p=0.4, ),
K.ColorJitter(hue=0.01, saturation=0.01, p=0.7),)
"""
def set_cut_pow(self, cut_pow):
self.cut_pow = cut_pow
def forward(self, input):
sideY, sideX = input.shape[2:4]
max_size = min(sideX, sideY)
min_size = min(sideX, sideY, self.cut_size)
cutouts = []
cutouts_full = []
noise_fac = 0.1
min_size_width = min(sideX, sideY)
lower_bound = float(self.cut_size / min_size_width)
for ii in range(self.cutn):
# size = int(torch.rand([])**self.cut_pow * (max_size - min_size) + min_size)
randsize = (
torch.zeros(
1,
)
.normal_(mean=0.8, std=0.3)
.clip(lower_bound, 1.0)
)
size_mult = randsize**self.cut_pow
size = int(
min_size_width * (size_mult.clip(lower_bound, 1.0))
) # replace .5 with a result for 224 the default large size is .95
# size = int(min_size_width*torch.zeros(1,).normal_(mean=.9, std=.3).clip(lower_bound, .95)) # replace .5 with a result for 224 the default large size is .95
offsetx = torch.randint(0, sideX - size + 1, ())
offsety = torch.randint(0, sideY - size + 1, ())
cutout = input[:, :, offsety : offsety + size, offsetx : offsetx + size]
cutouts.append(resample(cutout, (self.cut_size, self.cut_size)))
cutouts = torch.cat(cutouts, dim=0)
cutouts = clamp_with_grad(cutouts, 0, 1)
# if args.use_augs:
cutouts = self.augs(cutouts)
if self.noise_fac:
facs = cutouts.new_empty([cutouts.shape[0], 1, 1, 1]).uniform_(
0, self.noise_fac
)
cutouts = cutouts + facs * torch.randn_like(cutouts)
return cutouts
class MakeCutoutsZynth(nn.Module):
def __init__(self, cut_size, cutn, cut_pow, augs):
super().__init__()
self.cut_size = cut_size
# tqdm.write(f"cut size: {self.cut_size}")
self.cutn = cutn
self.cut_pow = cut_pow
self.noise_fac = 0.1
self.av_pool = nn.AdaptiveAvgPool2d((self.cut_size, self.cut_size))
self.max_pool = nn.AdaptiveMaxPool2d((self.cut_size, self.cut_size))
self.augs = nn.Sequential(
K.RandomHorizontalFlip(p=0.5),
# K.RandomSolarize(0.01, 0.01, p=0.7),
K.RandomSharpness(0.3, p=0.4),
K.RandomAffine(degrees=30, translate=0.1, p=0.8, padding_mode="border"),
K.RandomPerspective(0.2, p=0.4),
K.ColorJitter(hue=0.01, saturation=0.01, p=0.7),
)
def set_cut_pow(self, cut_pow):
self.cut_pow = cut_pow
def forward(self, input):
sideY, sideX = input.shape[2:4]
max_size = min(sideX, sideY)
min_size = min(sideX, sideY, self.cut_size)
cutouts = []
cutouts_full = []
noise_fac = 0.1
min_size_width = min(sideX, sideY)
lower_bound = float(self.cut_size / min_size_width)
for ii in range(self.cutn):
# size = int(torch.rand([])**self.cut_pow * (max_size - min_size) + min_size)
randsize = (
torch.zeros(
1,
)
.normal_(mean=0.8, std=0.3)
.clip(lower_bound, 1.0)
)
size_mult = randsize**self.cut_pow
size = int(
min_size_width * (size_mult.clip(lower_bound, 1.0))
) # replace .5 with a result for 224 the default large size is .95
# size = int(min_size_width*torch.zeros(1,).normal_(mean=.9, std=.3).clip(lower_bound, .95)) # replace .5 with a result for 224 the default large size is .95
offsetx = torch.randint(0, sideX - size + 1, ())
offsety = torch.randint(0, sideY - size + 1, ())
cutout = input[:, :, offsety : offsety + size, offsetx : offsetx + size]
cutouts.append(resample(cutout, (self.cut_size, self.cut_size)))
cutouts = torch.cat(cutouts, dim=0)
cutouts = clamp_with_grad(cutouts, 0, 1)
# if args.use_augs:
cutouts = self.augs(cutouts)
if self.noise_fac:
facs = cutouts.new_empty([cutouts.shape[0], 1, 1, 1]).uniform_(
0, self.noise_fac
)
cutouts = cutouts + facs * torch.randn_like(cutouts)
return cutouts
class MakeCutoutsWyvern(nn.Module):
def __init__(self, cut_size, cutn, cut_pow, augs):
super().__init__()
self.cut_size = cut_size
# tqdm.write(f"cut size: {self.cut_size}")
self.cutn = cutn
self.cut_pow = cut_pow
self.noise_fac = 0.1
self.av_pool = nn.AdaptiveAvgPool2d((self.cut_size, self.cut_size))
self.max_pool = nn.AdaptiveMaxPool2d((self.cut_size, self.cut_size))
self.augs = augs
def forward(self, input):
sideY, sideX = input.shape[2:4]
max_size = min(sideX, sideY)
min_size = min(sideX, sideY, self.cut_size)
cutouts = []
for _ in range(self.cutn):
size = int(
torch.rand([]) ** self.cut_pow * (max_size - min_size) + min_size
)
offsetx = torch.randint(0, sideX - size + 1, ())
offsety = torch.randint(0, sideY - size + 1, ())
cutout = input[:, :, offsety : offsety + size, offsetx : offsetx + size]
cutouts.append(resample(cutout, (self.cut_size, self.cut_size)))
return clamp_with_grad(torch.cat(cutouts, dim=0), 0, 1)
import PIL
def resize_image(image, out_size):
ratio = image.size[0] / image.size[1]
area = min(image.size[0] * image.size[1], out_size[0] * out_size[1])
size = round((area * ratio) ** 0.5), round((area / ratio) ** 0.5)
return image.resize(size, PIL.Image.LANCZOS)
class GaussianBlur2d(nn.Module):
def __init__(self, sigma, window=0, mode="reflect", value=0):
super().__init__()
self.mode = mode
self.value = value
if not window:
window = max(math.ceil((sigma * 6 + 1) / 2) * 2 - 1, 3)
if sigma:
kernel = torch.exp(
-((torch.arange(window) - window // 2) ** 2) / 2 / sigma**2
)
kernel /= kernel.sum()
else:
kernel = torch.ones([1])
self.register_buffer("kernel", kernel)
def forward(self, input):
n, c, h, w = input.shape
input = input.view([n * c, 1, h, w])
start_pad = (self.kernel.shape[0] - 1) // 2
end_pad = self.kernel.shape[0] // 2
input = F.pad(
input, (start_pad, end_pad, start_pad, end_pad), self.mode, self.value
)
input = F.conv2d(input, self.kernel[None, None, None, :])
input = F.conv2d(input, self.kernel[None, None, :, None])
return input.view([n, c, h, w])
BUF_SIZE = 65536
def get_digest(path, alg=hashlib.sha256):
hash = alg()
# print(path)
with open(path, "rb") as fp:
while True:
data = fp.read(BUF_SIZE)
if not data:
break
hash.update(data)
return b64encode(hash.digest()).decode("utf-8")
flavordict = {
"cumin": MakeCutoutsCumin,
"holywater": MakeCutoutsHolywater,
"old_holywater": MakeCutoutsOldHolywater,
"ginger": MakeCutoutsGinger,
"zynth": MakeCutoutsZynth,
"wyvern": MakeCutoutsWyvern,
"aaron": MakeCutoutsAaron,
"moth": MakeCutoutsMoth,
"juu": MakeCutoutsJuu,
"custom": MakeCutoutsCustom,
}
@torch.jit.script
def gelu_impl(x):
"""OpenAI's gelu implementation."""
return (
0.5
* x
* (1.0 + torch.tanh(0.7978845608028654 * x * (1.0 + 0.044715 * x * x)))
)
def gelu(x):
return gelu_impl(x)
class MSEDecayLoss(nn.Module):
def __init__(self, init_weight, mse_decay_rate, mse_epoches, mse_quantize):
super().__init__()
self.init_weight = init_weight
self.has_init_image = False
self.mse_decay = init_weight / mse_epoches if init_weight else 0
self.mse_decay_rate = mse_decay_rate
self.mse_weight = init_weight
self.mse_epoches = mse_epoches
self.mse_quantize = mse_quantize
@torch.no_grad()
def set_target(self, z_tensor, model):
z_tensor = z_tensor.detach().clone()
if self.mse_quantize:
z_tensor = vector_quantize(
z_tensor.movedim(1, 3), model.quantize.embedding.weight
).movedim(
3, 1
) # z.average
self.z_orig = z_tensor
def forward(self, i, z):
if self.is_active(i):
return F.mse_loss(z, self.z_orig) * self.mse_weight / 2
return 0
def is_active(self, i):
if not self.init_weight:
return False
if i <= self.mse_decay_rate and not self.has_init_image:
return False
return True
@torch.no_grad()
def step(self, i):
if (
i % self.mse_decay_rate == 0
and i != 0
and i < self.mse_decay_rate * self.mse_epoches
):
if (
self.mse_weight - self.mse_decay > 0
and self.mse_weight - self.mse_decay >= self.mse_decay
):
self.mse_weight -= self.mse_decay
else:
self.mse_weight = 0
# print(f"updated mse weight: {self.mse_weight}")
return True
return False
class TVLoss(nn.Module):
def forward(self, input):
input = F.pad(input, (0, 1, 0, 1), "replicate")
x_diff = input[..., :-1, 1:] - input[..., :-1, :-1]
y_diff = input[..., 1:, :-1] - input[..., :-1, :-1]
diff = x_diff**2 + y_diff**2 + 1e-8
return diff.mean(dim=1).sqrt().mean()
class MultiClipLoss(nn.Module):
def __init__(
self, clip_models, text_prompt, cutn, cut_pow=1.0, clip_weight=1.0
):
super().__init__()
# Load Clip
self.perceptors = []
for cm in clip_models:
sys.stdout.write(f"Loading {cm[0]} ...\n")
sys.stdout.flush()
c = (
clip.load(cm[0], jit=False)[0]
.eval()
.requires_grad_(False)
.to(device)
)
self.perceptors.append(
{
"res": c.visual.input_resolution,
"perceptor": c,
"weight": cm[1],
"prompts": [],
}
)
self.perceptors.sort(key=lambda e: e["res"], reverse=True)
# Make Cutouts
self.max_cut_size = self.perceptors[0]["res"]
# self.make_cuts = flavordict[flavor](self.max_cut_size, cutn, cut_pow)
# cutouts = flavordict[flavor](self.max_cut_size, cutn, cut_pow=cut_pow, augs=args.augs)
# Get Prompt Embedings
# texts = [phrase.strip() for phrase in text_prompt.split("|")]
# if text_prompt == ['']:
# texts = []
texts = text_prompt
self.pMs = []
for prompt in texts:
txt, weight, stop = parse_prompt(prompt)
clip_token = clip.tokenize(txt).to(device)
for p in self.perceptors:
embed = p["perceptor"].encode_text(clip_token).float()
embed_normed = F.normalize(embed.unsqueeze(0), dim=2)
p["prompts"].append(
{
"embed_normed": embed_normed,
"weight": torch.as_tensor(weight, device=device),
"stop": torch.as_tensor(stop, device=device),
}
)
# Prep Augments
self.normalize = transforms.Normalize(
mean=[0.48145466, 0.4578275, 0.40821073],
std=[0.26862954, 0.26130258, 0.27577711],
)
self.augs = nn.Sequential(
K.RandomHorizontalFlip(p=0.5),
K.RandomSharpness(0.3, p=0.1),
K.RandomAffine(
degrees=30, translate=0.1, p=0.8, padding_mode="border"
), # padding_mode=2
K.RandomPerspective(
0.2,
p=0.4,
),
K.ColorJitter(hue=0.01, saturation=0.01, p=0.7),
K.RandomGrayscale(p=0.15),
)
self.noise_fac = 0.1
self.clip_weight = clip_weight
def prepare_cuts(self, img):
cutouts = self.make_cuts(img)
cutouts = self.augs(cutouts)
if self.noise_fac:
facs = cutouts.new_empty([cutouts.shape[0], 1, 1, 1]).uniform_(
0, self.noise_fac
)
cutouts = cutouts + facs * torch.randn_like(cutouts)
cutouts = self.normalize(cutouts)
return cutouts
def forward(self, i, img):
cutouts = checkpoint(self.prepare_cuts, img)
loss = []
current_cuts = cutouts
currentres = self.max_cut_size
for p in self.perceptors:
if currentres != p["res"]:
current_cuts = resample(cutouts, (p["res"], p["res"]))
currentres = p["res"]
iii = p["perceptor"].encode_image(current_cuts).float()
input_normed = F.normalize(iii.unsqueeze(1), dim=2)
for prompt in p["prompts"]:
dists = (
input_normed.sub(prompt["embed_normed"])
.norm(dim=2)
.div(2)
.arcsin()
.pow(2)
.mul(2)
)
dists = dists * prompt["weight"].sign()
l = (
prompt["weight"].abs()
* replace_grad(
dists, torch.maximum(dists, prompt["stop"])
).mean()
)
loss.append(l * p["weight"])
return loss
class ModelHost:
def __init__(self, args):
self.args = args
self.model, self.perceptor = None, None
self.make_cutouts = None
self.alt_make_cutouts = None
self.imageSize = None
self.prompts = None
self.opt = None
self.normalize = None
self.z, self.z_orig, self.z_min, self.z_max = None, None, None, None
self.metadata = None
self.mse_weight = 0
self.normal_flip_optim = None
self.usealtprompts = False
def setup_metadata(self, seed):
metadata = {k: v for k, v in vars(self.args).items()}
del metadata["max_iterations"]
del metadata["display_freq"]
metadata["seed"] = seed
if metadata["init_image"]:
path = metadata["init_image"]
digest = get_digest(path)
metadata["init_image"] = (path, digest)
if metadata["image_prompts"]:
prompts = []
for prompt in metadata["image_prompts"]:
path = prompt
digest = get_digest(path)
prompts.append((path, digest))
metadata["image_prompts"] = prompts
self.metadata = metadata
def setup_model(self, x):
i = x
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
#perceptor = (
# clip.load(args.clip_model, jit=False)[0]
# .eval()
# .requires_grad_(False)
# .to(device)
#)
cut_size = perceptor.visual.input_resolution
if self.args.is_gumbel:
e_dim = model.quantize.embedding_dim
else:
e_dim = model.quantize.e_dim
f = 2 ** (model.decoder.num_resolutions - 1)
make_cutouts = flavordict[flavor](
cut_size, args.mse_cutn, cut_pow=args.mse_cut_pow, augs=args.augs
)
# make_cutouts = MakeCutouts(cut_size, args.mse_cutn, cut_pow=args.mse_cut_pow,augs=args.augs)
if args.altprompts:
self.usealtprompts = True
self.alt_make_cutouts = flavordict[flavor](
cut_size,
args.mse_cutn,
cut_pow=args.alt_mse_cut_pow,
augs=args.altaugs,
)
# self.alt_make_cutouts = MakeCutouts(cut_size, args.mse_cutn, cut_pow=args.alt_mse_cut_pow,augs=args.altaugs)
if self.args.is_gumbel:
n_toks = model.quantize.n_embed
else:
n_toks = model.quantize.n_e
toksX, toksY = args.size[0] // f, args.size[1] // f
sideX, sideY = toksX * f, toksY * f
if self.args.is_gumbel:
z_min = model.quantize.embed.weight.min(dim=0).values[
None, :, None, None
]
z_max = model.quantize.embed.weight.max(dim=0).values[
None, :, None, None
]
else:
z_min = model.quantize.embedding.weight.min(dim=0).values[
None, :, None, None
]
z_max = model.quantize.embedding.weight.max(dim=0).values[
None, :, None, None
]
from PIL import Image
import cv2
# -------
working_dir = self.args.folder_name
if self.args.init_image != "":
img_0 = cv2.imread(init_image)
z, *_ = model.encode(
TF.to_tensor(img_0).to(device).unsqueeze(0) * 2 - 1
)
elif not os.path.isfile(f"{working_dir}/steps/{i:04d}.png"):
one_hot = F.one_hot(
torch.randint(n_toks, [toksY * toksX], device=device), n_toks
).float()
if self.args.is_gumbel:
z = one_hot @ model.quantize.embed.weight
else:
z = one_hot @ model.quantize.embedding.weight
z = z.view([-1, toksY, toksX, e_dim]).permute(0, 3, 1, 2)
else:
center = (1 * img_0.shape[1] // 2, 1 * img_0.shape[0] // 2)
trans_mat = np.float32([[1, 0, 10], [0, 1, 10]])
rot_mat = cv2.getRotationMatrix2D(center, 10, 20)
trans_mat = np.vstack([trans_mat, [0, 0, 1]])
rot_mat = np.vstack([rot_mat, [0, 0, 1]])
transformation_matrix = np.matmul(rot_mat, trans_mat)
img_0 = cv2.warpPerspective(
img_0,
transformation_matrix,
(img_0.shape[1], img_0.shape[0]),
borderMode=cv2.BORDER_WRAP,
)
z, *_ = model.encode(
TF.to_tensor(img_0).to(device).unsqueeze(0) * 2 - 1
)
def save_output(i, img, suffix="zoomed"):
filename = f"{working_dir}/steps/{i:04}{'_' + suffix if suffix else ''}.png"
imageio.imwrite(filename, np.array(img))
save_output(i, img_0)
# -------
if args.init_image:
pil_image = Image.open(args.init_image).convert("RGB")
pil_image = pil_image.resize((sideX, sideY), Image.LANCZOS)
z, *_ = model.encode(
TF.to_tensor(pil_image).to(device).unsqueeze(0) * 2 - 1
)
else:
one_hot = F.one_hot(
torch.randint(n_toks, [toksY * toksX], device=device), n_toks
).float()
if self.args.is_gumbel:
z = one_hot @ model.quantize.embed.weight
else:
z = one_hot @ model.quantize.embedding.weight
z = z.view([-1, toksY, toksX, e_dim]).permute(0, 3, 1, 2)
z = EMATensor(z, args.ema_val)
if args.mse_with_zeros and not args.init_image:
z_orig = torch.zeros_like(z.tensor)
else:
z_orig = z.tensor.clone()
z.requires_grad_(True)
# opt = optim.AdamW(z.parameters(), lr=args.mse_step_size, weight_decay=0.00000000)
print("Step size inside:", args.step_size)
if self.normal_flip_optim == True:
if randint(1, 2) == 1:
opt = torch.optim.AdamW(
z.parameters(), lr=args.step_size, weight_decay=0.00000000
)
# opt = Ranger21(z.parameters(), lr=args.step_size, weight_decay=0.00000000)
else:
opt = optim.DiffGrad(
z.parameters(), lr=args.step_size, weight_decay=0.00000000
)
else:
opt = torch.optim.AdamW(
z.parameters(), lr=args.step_size, weight_decay=0.00000000
)
self.cur_step_size = args.mse_step_size
normalize = transforms.Normalize(
mean=[0.48145466, 0.4578275, 0.40821073],
std=[0.26862954, 0.26130258, 0.27577711],
)
pMs = []
altpMs = []
for prompt in args.prompts:
txt, weight, stop = parse_prompt(prompt)
embed = perceptor.encode_text(clip.tokenize(txt).to(device)).float()
pMs.append(Prompt(embed, weight, stop).to(device))
for prompt in args.altprompts:
txt, weight, stop = parse_prompt(prompt)
embed = perceptor.encode_text(clip.tokenize(txt).to(device)).float()
altpMs.append(Prompt(embed, weight, stop).to(device))
from PIL import Image
for prompt in args.image_prompts:
path, weight, stop = parse_prompt(prompt)
img = resize_image(Image.open(path).convert("RGB"), (sideX, sideY))
batch = make_cutouts(TF.to_tensor(img).unsqueeze(0).to(device))
embed = perceptor.encode_image(normalize(batch)).float()
pMs.append(Prompt(embed, weight, stop).to(device))
for seed, weight in zip(args.noise_prompt_seeds, args.noise_prompt_weights):
gen = torch.Generator().manual_seed(seed)
embed = torch.empty([1, perceptor.visual.output_dim]).normal_(
generator=gen
)
pMs.append(Prompt(embed, weight).to(device))
if self.usealtprompts:
altpMs.append(Prompt(embed, weight).to(device))
self.model, self.perceptor = model, perceptor
self.make_cutouts = make_cutouts
self.imageSize = (sideX, sideY)
self.prompts = pMs
self.altprompts = altpMs
self.opt = opt
self.normalize = normalize
self.z, self.z_orig, self.z_min, self.z_max = z, z_orig, z_min, z_max
self.setup_metadata(args2.seed)
self.mse_weight = self.args.init_weight
def synth(self, z):
if self.args.is_gumbel:
z_q = vector_quantize(
z.movedim(1, 3), self.model.quantize.embed.weight
).movedim(3, 1)
else:
z_q = vector_quantize(
z.movedim(1, 3), self.model.quantize.embedding.weight
).movedim(3, 1)
return clamp_with_grad(self.model.decode(z_q).add(1).div(2), 0, 1)
def add_metadata(self, path, i):
imfile = PngImageFile(path)
meta = PngInfo()
step_meta = {"iterations": i}
step_meta.update(self.metadata)
# meta.add_itxt('vqgan-params', json.dumps(step_meta), zip=True)
imfile.save(path, pnginfo=meta)
# Hey you. This one's for Glooperpogger#7353 on Discord (Gloop has a gun), they are a nice snek
@torch.no_grad()
def checkin(self, i, losses, x):
out = self.synth(self.z.average)
batchpath = "./"
TF.to_pil_image(out[0].cpu()).save(args2.image_file)
def unique_index(self, batchpath):
i = 0
while i < 10000:
if os.path.isfile(batchpath + "/" + str(i) + ".png"):
i = i + 1
else:
return batchpath + "/" + str(i) + ".png"
def ascend_txt(self, i):
out = self.synth(self.z.tensor)
iii = self.perceptor.encode_image(
self.normalize(self.make_cutouts(out))
).float()
result = []
if self.args.init_weight and self.mse_weight > 0:
result.append(
F.mse_loss(self.z.tensor, self.z_orig) * self.mse_weight / 2
)
for prompt in self.prompts:
result.append(prompt(iii))
if self.usealtprompts:
iii = self.perceptor.encode_image(
self.normalize(self.alt_make_cutouts(out))
).float()
for prompt in self.altprompts:
result.append(prompt(iii))
return result
def train(self, i, x):
self.opt.zero_grad()
mse_decay = self.args.mse_decay
mse_decay_rate = self.args.mse_decay_rate
lossAll = self.ascend_txt(i)
sys.stdout.write("Iteration {}".format(i) + "\n")
sys.stdout.flush()
if i % (args2.iterations-2) == 0:
self.checkin(i, lossAll, x)
loss = sum(lossAll)
loss.backward()
self.opt.step()
with torch.no_grad():
if (
self.mse_weight > 0
and self.args.init_weight
and i > 0
and i % mse_decay_rate == 0
):
if self.args.is_gumbel:
self.z_orig = vector_quantize(
self.z.average.movedim(1, 3),
self.model.quantize.embed.weight,
).movedim(3, 1)
else:
self.z_orig = vector_quantize(
self.z.average.movedim(1, 3),
self.model.quantize.embedding.weight,
).movedim(3, 1)
if self.mse_weight - mse_decay > 0:
self.mse_weight = self.mse_weight - mse_decay
# print(f"updated mse weight: {self.mse_weight}")
else:
self.mse_weight = 0
self.make_cutouts = flavordict[flavor](
self.perceptor.visual.input_resolution,
args.cutn,
cut_pow=args.cut_pow,
augs=args.augs,
)
if self.usealtprompts:
self.alt_make_cutouts = flavordict[flavor](
self.perceptor.visual.input_resolution,
args.cutn,
cut_pow=args.alt_cut_pow,
augs=args.altaugs,
)
self.z = EMATensor(self.z.average, args.ema_val)
self.new_step_size = args.step_size
self.opt = torch.optim.AdamW(
self.z.parameters(),
lr=args.step_size,
weight_decay=0.00000000,
)
# print(f"updated mse weight: {self.mse_weight}")
if i > args.mse_end:
if (
args.step_size != args.final_step_size
and args.max_iterations > 0
):
progress = (i - args.mse_end) / (args.max_iterations)
self.cur_step_size = lerp(step_size, final_step_size, progress)
for g in self.opt.param_groups:
g["lr"] = self.cur_step_size
def run(self, x):
j = 0
try:
print("Step size: ", args.step_size)
print("Step MSE size: ", args.mse_step_size)
before_start_time = time.perf_counter()
total_steps = int(args.max_iterations + args.mse_end) - 1
for _ in range(total_steps):
self.train(j, x)
if j > 0 and j % args.mse_decay_rate == 0 and self.mse_weight > 0:
self.z = EMATensor(self.z.average, args.ema_val)
self.opt = torch.optim.AdamW(
self.z.parameters(),
lr=args.mse_step_size,
weight_decay=0.00000000,
)
if j >= total_steps:
break
self.z.update()
j += 1
time_past_seconds = time.perf_counter() - before_start_time
iterations_per_second = j / time_past_seconds
time_left = (total_steps - j) / iterations_per_second
percentage = round((j / (total_steps + 1)) * 100)
import shutil
import os
#image_data = Image.open(args2.image_file)
#os.remove(args2.image_file)
#return(image_data)
except KeyboardInterrupt:
pass
def add_noise(img):
# Getting the dimensions of the image
row, col = img.shape
# Randomly pick some pixels in the
# image for coloring them white
# Pick a random number between 300 and 10000
number_of_pixels = random.randint(300, 10000)
for i in range(number_of_pixels):
# Pick a random y coordinate
y_coord = random.randint(0, row - 1)
# Pick a random x coordinate
x_coord = random.randint(0, col - 1)
# Color that pixel to white
img[y_coord][x_coord] = 255
# Randomly pick some pixels in
# the image for coloring them black
# Pick a random number between 300 and 10000
number_of_pixels = random.randint(300, 10000)
for i in range(number_of_pixels):
# Pick a random y coordinate
y_coord = random.randint(0, row - 1)
# Pick a random x coordinate
x_coord = random.randint(0, col - 1)
# Color that pixel to black
img[y_coord][x_coord] = 0
return img
import io
import base64
def image_to_data_url(img, ext):
img_byte_arr = io.BytesIO()
img.save(img_byte_arr, format=ext)
img_byte_arr = img_byte_arr.getvalue()
# ext = filename.split('.')[-1]
prefix = f"data:image/{ext};base64,"
return prefix + base64.b64encode(img_byte_arr).decode("utf-8")
import torch
import math
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def rand_perlin_2d(
shape, res, fade=lambda t: 6 * t**5 - 15 * t**4 + 10 * t**3
):
delta = (res[0] / shape[0], res[1] / shape[1])
d = (shape[0] // res[0], shape[1] // res[1])
grid = (
torch.stack(
torch.meshgrid(
torch.arange(0, res[0], delta[0]), torch.arange(0, res[1], delta[1])
),
dim=-1,
)
% 1
)
angles = 2 * math.pi * torch.rand(res[0] + 1, res[1] + 1)
gradients = torch.stack((torch.cos(angles), torch.sin(angles)), dim=-1)
tile_grads = (
lambda slice1, slice2: gradients[
slice1[0] : slice1[1], slice2[0] : slice2[1]
]
.repeat_interleave(d[0], 0)
.repeat_interleave(d[1], 1)
)
dot = lambda grad, shift: (
torch.stack(
(
grid[: shape[0], : shape[1], 0] + shift[0],
grid[: shape[0], : shape[1], 1] + shift[1],
),
dim=-1,
)
* grad[: shape[0], : shape[1]]
).sum(dim=-1)
n00 = dot(tile_grads([0, -1], [0, -1]), [0, 0])
n10 = dot(tile_grads([1, None], [0, -1]), [-1, 0])
n01 = dot(tile_grads([0, -1], [1, None]), [0, -1])
n11 = dot(tile_grads([1, None], [1, None]), [-1, -1])
t = fade(grid[: shape[0], : shape[1]])
return math.sqrt(2) * torch.lerp(
torch.lerp(n00, n10, t[..., 0]), torch.lerp(n01, n11, t[..., 0]), t[..., 1]
)
def rand_perlin_2d_octaves(desired_shape, octaves=1, persistence=0.5):
shape = torch.tensor(desired_shape)
shape = 2 ** torch.ceil(torch.log2(shape))
shape = shape.type(torch.int)
max_octaves = int(
min(
octaves,
math.log(shape[0]) / math.log(2),
math.log(shape[1]) / math.log(2),
)
)
res = torch.floor(shape / 2**max_octaves).type(torch.int)
noise = torch.zeros(list(shape))
frequency = 1
amplitude = 1
for _ in range(max_octaves):
noise += amplitude * rand_perlin_2d(
shape, (frequency * res[0], frequency * res[1])
)
frequency *= 2
amplitude *= persistence
return noise[: desired_shape[0], : desired_shape[1]]
def rand_perlin_rgb(desired_shape, amp=0.1, octaves=6):
r = rand_perlin_2d_octaves(desired_shape, octaves)
g = rand_perlin_2d_octaves(desired_shape, octaves)
b = rand_perlin_2d_octaves(desired_shape, octaves)
rgb = (torch.stack((r, g, b)) * amp + 1) * 0.5
return rgb.unsqueeze(0).clip(0, 1).to(device)
def pyramid_noise_gen(shape, octaves=5, decay=1.0):
n, c, h, w = shape
noise = torch.zeros([n, c, 1, 1])
max_octaves = int(min(math.log(h) / math.log(2), math.log(w) / math.log(2)))
if octaves is not None and 0 < octaves:
max_octaves = min(octaves, max_octaves)
for i in reversed(range(max_octaves)):
h_cur, w_cur = h // 2**i, w // 2**i
noise = F.interpolate(
noise, (h_cur, w_cur), mode="bicubic", align_corners=False
)
noise += (torch.randn([n, c, h_cur, w_cur]) / max_octaves) * decay ** (
max_octaves - (i + 1)
)
return noise
def rand_z(model, toksX, toksY):
e_dim = model.quantize.e_dim
n_toks = model.quantize.n_e
z_min = model.quantize.embedding.weight.min(dim=0).values[None, :, None, None]
z_max = model.quantize.embedding.weight.max(dim=0).values[None, :, None, None]
one_hot = F.one_hot(
torch.randint(n_toks, [toksY * toksX], device=device), n_toks
).float()
z = one_hot @ model.quantize.embedding.weight
z = z.view([-1, toksY, toksX, e_dim]).permute(0, 3, 1, 2)
return z
def make_rand_init(
mode,
model,
perlin_octaves,
perlin_weight,
pyramid_octaves,
pyramid_decay,
toksX,
toksY,
f,
):
if mode == "VQGAN ZRand":
return rand_z(model, toksX, toksY)
elif mode == "Perlin Noise":
rand_init = rand_perlin_rgb(
(toksY * f, toksX * f), perlin_weight, perlin_octaves
)
z, *_ = model.encode(rand_init * 2 - 1)
return z
elif mode == "Pyramid Noise":
rand_init = pyramid_noise_gen(
(1, 3, toksY * f, toksX * f), pyramid_octaves, pyramid_decay
).to(device)
rand_init = (rand_init * 0.5 + 0.5).clip(0, 1)
z, *_ = model.encode(rand_init * 2 - 1)
return z
##################### JUICY MESS ###################################
import os
imagenet_1024 = False # @param {type:"boolean"}
imagenet_16384 = True # @param {type:"boolean"}
gumbel_8192 = False # @param {type:"boolean"}
sber_gumbel = False # @param {type:"boolean"}
# imagenet_cin = False #@param {type:"boolean"}
coco = False # @param {type:"boolean"}
coco_1stage = False # @param {type:"boolean"}
faceshq = False # @param {type:"boolean"}
wikiart_1024 = False # @param {type:"boolean"}
wikiart_16384 = False # @param {type:"boolean"}
wikiart_7mil = False # @param {type:"boolean"}
sflckr = False # @param {type:"boolean"}
##@markdown Experimental models (won't probably work, if you know how to make them work, go ahead :D):
# celebahq = False #@param {type:"boolean"}
# ade20k = False #@param {type:"boolean"}
# drin = False #@param {type:"boolean"}
# gumbel = False #@param {type:"boolean"}
# gumbel_8192 = False #@param {type:"boolean"}
# Configure and run the model"""
# Commented out IPython magic to ensure Python compatibility.
# @title <font color="lightgreen" size="+3">←</font> <font size="+2">🏃‍♂️</font> **Configure & Run** <font size="+2">🏃‍♂️</font>
import os
import random
import cv2
# from google.colab import drive
from PIL import Image
from importlib import reload
reload(PIL.TiffTags)
# %cd /content/
# @markdown >`prompts` is the list of prompts to give to the AI, separated by `|`. With more than one, it will attempt to mix them together. You can add weights to different parts of the prompt by adding a `p:x` at the end of a prompt (before a `|`) where `p` is the prompt and `x` is the weight.
# prompts = "A fantasy landscape, by Greg Rutkowski. A lush mountain.:1 | Trending on ArtStation, unreal engine. 4K HD, realism.:0.63" #@param {type:"string"}
prompts = args2.prompt
width = args2.sizex # @param {type:"number"}
height = args2.sizey # @param {type:"number"}
# model = "ImageNet 16384" #@param ['ImageNet 16384', 'ImageNet 1024', "Gumbel 8192", "Sber Gumbel", 'WikiArt 1024', 'WikiArt 16384', 'WikiArt 7mil', 'COCO-Stuff', 'COCO 1 Stage', 'FacesHQ', 'S-FLCKR']
#model = args2.vqgan_model
#if model == "Gumbel 8192" or model == "Sber Gumbel":
# is_gumbel = True
#else:
# is_gumbel = False
is_gumbel = False
##@markdown The flavor effects the output greatly. Each has it's own characteristics and depending on what you choose, you'll get a widely different result with the same prompt and seed. Ginger is the default, nothing special. Cumin results more of a painting, while Holywater makes everythng super funky and/or colorful. Custom is a custom flavor, use the utilities above.
# Type "old_holywater" to use the old holywater flavor from Hypertron V1
flavor = (
args2.flavor
) #'ginger' #@param ["ginger", "cumin", "holywater", "zynth", "wyvern", "aaron", "moth", "juu", "custom"]
template = (
args2.template
) # @param ["none", "----------Parameter Tweaking----------", "Balanced", "Detailed", "Consistent Creativity", "Realistic", "Smooth", "Subtle MSE", "Hyper Fast Results", "----------Complete Overhaul----------", "flag", "planet", "creature", "human", "----------Sizes----------", "Size: Square", "Size: Landscape", "Size: Poster", "----------Prompt Modifiers----------", "Better - Fast", "Better - Slow", "Movie Poster", "Negative Prompt", "Better Quality"]
##@markdown To use initial or target images, upload it on the left in the file browser. You can also use previous outputs by putting its path below, e.g. `batch_01/0.png`. If your previous output is saved to drive, you can use the checkbox so you don't have to type the whole path.
init = "default noise" # @param ["default noise", "image", "random image", "salt and pepper noise", "salt and pepper noise on init image"]
if args2.seed_image is None:
init_image = "" # args2.seed_image #""#@param {type:"string"}
else:
init_image = args2.seed_image # ""#@param {type:"string"}
if init == "random image":
url = (
"https://picsum.photos/"
+ str(width)
+ "/"
+ str(height)
+ "?blur="
+ str(random.randrange(5, 10))
)
urllib.request.urlretrieve(url, "Init_Img/Image.png")
init_image = "Init_Img/Image.png"
elif init == "random image clear":
url = "https://source.unsplash.com/random/" + str(width) + "x" + str(height)
urllib.request.urlretrieve(url, "Init_Img/Image.png")
init_image = "Init_Img/Image.png"
elif init == "random image clear 2":
url = "https://loremflickr.com/" + str(width) + "/" + str(height)
urllib.request.urlretrieve(url, "Init_Img/Image.png")
init_image = "Init_Img/Image.png"
elif init == "salt and pepper noise":
urllib.request.urlretrieve(
"https://i.stack.imgur.com/olrL8.png", "Init_Img/Image.png"
)
import cv2
img = cv2.imread("Init_Img/Image.png", 0)
cv2.imwrite("Init_Img/Image.png", add_noise(img))
init_image = "Init_Img/Image.png"
elif init == "salt and pepper noise on init image":
img = cv2.imread(init_image, 0)
cv2.imwrite("Init_Img/Image.png", add_noise(img))
init_image = "Init_Img/Image.png"
elif init == "perlin noise":
# For some reason Colab started crashing from this
import noise
import numpy as np
from PIL import Image
shape = (width, height)
scale = 100
octaves = 6
persistence = 0.5
lacunarity = 2.0
seed = np.random.randint(0, 100000)
world = np.zeros(shape)
for i in range(shape[0]):
for j in range(shape[1]):
world[i][j] = noise.pnoise2(
i / scale,
j / scale,
octaves=octaves,
persistence=persistence,
lacunarity=lacunarity,
repeatx=1024,
repeaty=1024,
base=seed,
)
Image.fromarray(prep_world(world)).convert("L").save("Init_Img/Image.png")
init_image = "Init_Img/Image.png"
elif init == "black and white":
url = "https://www.random.org/bitmaps/?format=png&width=300&height=300&zoom=1"
urllib.request.urlretrieve(url, "Init_Img/Image.png")
init_image = "Init_Img/Image.png"
seed = args2.seed # @param {type:"number"}
# @markdown >iterations excludes iterations spent during the mse phase, if it is being used. The total iterations will be more if `mse_decay_rate` is more than 0.
iterations = args2.iterations # @param {type:"number"}
transparent_png = False # @param {type:"boolean"}
# @markdown <font size="+3">⚠</font> **ADVANCED SETTINGS** <font size="+3">⚠</font>
# @markdown ---
# @markdown ---
# @markdown >If you want to make multiple images with different prompts, use this. Seperate different prompts for different images with a `~` (example: `prompt1~prompt1~prompt3`). Iter is the iterations you want each image to run for. If you use MSE, I'd type a pretty low number (about 10).
multiple_prompt_batches = False # @param {type:"boolean"}
multiple_prompt_batches_iter = 300 # @param {type:"number"}
# @markdown >`folder_name` is the name of the folder you want to output your result(s) to. Previous outputs will NOT be overwritten. By default, it will be saved to the colab's root folder, but the `save_to_drive` checkbox will save it to `MyDrive\VQGAN_Output` instead.
folder_name = "" # @param {type:"string"}
save_to_drive = False # @param {type:"boolean"}
prompt_experiment = "None" # @param ['None', 'Fever Dream', 'Philipuss’s Basement', 'Vivid Turmoil', 'Mad Dad', 'Platinum', 'Negative Energy']
if prompt_experiment == "Fever Dream":
prompts = "<|startoftext|>" + prompts + "<|endoftext|>"
elif prompt_experiment == "Vivid Turmoil":
prompts = prompts.replace(" ", "¡")
prompts = "¬" + prompts + "®"
elif prompt_experiment == "Mad Dad":
prompts = prompts.replace(" ", "\\s+")
elif prompt_experiment == "Platinum":
prompts = "~!" + prompts + "!~"
prompts = prompts.replace(" ", "</w>")
elif prompt_experiment == "Philipuss’s Basement":
prompts = "<|startoftext|>" + prompts
prompts = prompts.replace(" ", "<|endoftext|><|startoftext|>")
elif prompt_experiment == "Lowercase":
prompts = prompts.lower()
# @markdown >Target images work like prompts, write the name of the image. You can add multiple target images by seperating them with a `|`.
target_images = "" # @param {type:"string"}
# @markdown ><font size="+2">☢</font> Advanced values. Values of cut_pow below 1 prioritize structure over detail, and vice versa for above 1. Step_size affects how wild the change between iterations is, and if final_step_size is not 0, step_size will interpolate towards it over time.
# @markdown >Cutn affects on 'Creativity': less cutout will lead to more random/creative results, sometimes barely readable, while higher values (90+) lead to very stable, photo-like outputs
cutn = 130 # @param {type:"number"}
cut_pow = 1 # @param {type:"number"}
# @markdown >Step_size is like weirdness. Lower: more accurate/realistic, slower; Higher: less accurate/more funky, faster.
step_size = 0.1 # @param {type:"number"}
# @markdown >Start_step_size is a temporary step_size that will be active only in the first 10 iterations. It (sometimes) helps with speed. If it's set to 0, it won't be used.
start_step_size = 0 # @param {type:"number"}
# @markdown >Final_step_size is a goal step_size which the AI will try and reach. If set to 0, it won't be used.
final_step_size = 0 # @param {type:"number"}
if start_step_size <= 0:
start_step_size = step_size
if final_step_size <= 0:
final_step_size = step_size
# @markdown ---
# @markdown >EMA maintains a moving average of trained parameters. The number below is the rate of decay (higher means slower).
ema_val = 0.98 # @param {type:"number"}
# @markdown >If you want to keep starting from the same point, set `gen_seed` to a positive number. `-1` will make it random every time.
gen_seed = -1 # @param {type:'number'}
init_image_in_drive = False # @param {type:"boolean"}
if init_image_in_drive and init_image:
init_image = "/content/drive/MyDrive/VQGAN_Output/" + init_image
images_interval = args2.update # @param {type:"number"}
# I think you should give "Free Thoughts on the Proceedings of the Continental Congress" a read, really funny and actually well-written, Hamilton presented it in a bad light IMO.
batch_size = 1 # @param {type:"number"}
# @markdown ---
# @markdown <font size="+1">🔮</font> **MSE Regulization** <font size="+1">🔮</font>
# Based off of this notebook: https://colab.research.google.com/drive/1gFn9u3oPOgsNzJWEFmdK-N9h_y65b8fj?usp=sharing - already in credits
use_mse = args2.mse # @param {type:"boolean"}
mse_images_interval = images_interval
mse_init_weight = 0.2 # @param {type:"number"}
mse_decay_rate = 160 # @param {type:"number"}
mse_epoches = 10 # @param {type:"number"}
##@param {type:"number"}
# @markdown >Overwrites the usual values during the mse phase if included. If any value is 0, its normal counterpart is used instead.
mse_with_zeros = True # @param {type:"boolean"}
mse_step_size = 0.87 # @param {type:"number"}
mse_cutn = 42 # @param {type:"number"}
mse_cut_pow = 0.75 # @param {type:"number"}
# @markdown >normal_flip_optim flips between two optimizers during the normal (not MSE) phase. It can improve quality, but it's kind of experimental, use at your own risk.
normal_flip_optim = True # @param {type:"boolean"}
##@markdown >Adding some TV may make the image blurrier but also helps to get rid of noise. A good value to try might be 0.1.
# tv_weight = 0.1 #@param {type:'number'}
# @markdown ---
# @markdown >`altprompts` is a set of prompts that take in a different augmentation pipeline, and can have their own cut_pow. At the moment, the default "alt augment" settings flip the picture cutouts upside down before evaluating. This can be good for optical illusion images. If either cut_pow value is 0, it will use the same value as the normal prompts.
altprompts = "" # @param {type:"string"}
altprompt_mode = "flipped"
##@param ["normal" , "flipped", "sideways"]
alt_cut_pow = 0 # @param {type:"number"}
alt_mse_cut_pow = 0 # @param {type:"number"}
# altprompt_type = "upside-down" #@param ['upside-down', 'as']
##@markdown ---
##@markdown <font size="+1">💫</font> **Zooming and Moving** <font size="+1">💫</font>
zoom = False
##@param {type:"boolean"}
zoom_speed = 100
##@param {type:"number"}
zoom_frequency = 20
##@param {type:"number"}
# @markdown ---
# @markdown On an unrelated note, if you get any errors while running this, restart the runtime and run the first cell again. If that doesn't work either, message me on Discord (Philipuss#4066).
model_names = {
"vqgan_imagenet_f16_16384": "vqgan_imagenet_f16_16384",
"ImageNet 1024": "vqgan_imagenet_f16_1024",
"Gumbel 8192": "gumbel_8192",
"Sber Gumbel": "sber_gumbel",
"imagenet_cin": "imagenet_cin",
"WikiArt 1024": "wikiart_1024",
"WikiArt 16384": "wikiart_16384",
"COCO-Stuff": "coco",
"FacesHQ": "faceshq",
"S-FLCKR": "sflckr",
"WikiArt 7mil": "wikiart_7mil",
"COCO 1 Stage": "coco_1stage",
}
if template == "Better - Fast":
prompts = prompts + ". Detailed artwork. ArtStationHQ. unreal engine. 4K HD."
elif template == "Better - Slow":
prompts = (
prompts
+ ". Detailed artwork. Trending on ArtStation. unreal engine. | Rendered in Maya. "
+ prompts
+ ". 4K HD."
)
elif template == "Movie Poster":
prompts = prompts + ". Movie poster. Rendered in unreal engine. ArtStationHQ."
width = 400
height = 592
elif template == "flag":
prompts = (
"A photo of a flag of the country "
+ prompts
+ " | Flag of "
+ prompts
+ ". White background."
)
# import cv2
# img = cv2.imread('templates/flag.png', 0)
# cv2.imwrite('templates/final_flag.png', add_noise(img))
init_image = "templates/flag.png"
transparent_png = True
elif template == "planet":
import cv2
img = cv2.imread("templates/planet.png", 0)
cv2.imwrite("templates/final_planet.png", add_noise(img))
prompts = (
"A photo of the planet "
+ prompts
+ ". Planet in the middle with black background. | The planet of "
+ prompts
+ ". Photo of a planet. Black background. Trending on ArtStation. | Colorful."
)
init_image = "templates/final_planet.png"
elif template == "creature":
# import cv2
# img = cv2.imread('templates/planet.png', 0)
# cv2.imwrite('templates/final_planet.png', add_noise(img))
prompts = (
"A photo of a creature with "
+ prompts
+ ". Animal in the middle with white background. | The creature has "
+ prompts
+ ". Photo of a creature/animal. White background. Detailed image of a creature. | White background."
)
init_image = "templates/creature.png"
# transparent_png = True
elif template == "Detailed":
prompts = (
prompts
+ ", by Puer Udger. Detailed artwork, trending on artstation. 4K HD, realism."
)
flavor = "cumin"
elif template == "human":
init_image = "/content/templates/human.png"
elif template == "Realistic":
cutn = 200
step_size = 0.03
cut_pow = 0.2
flavor = "holywater"
elif template == "Consistent Creativity":
flavor = "cumin"
cut_pow = 0.01
cutn = 136
step_size = 0.08
mse_step_size = 0.41
mse_cut_pow = 0.3
ema_val = 0.99
normal_flip_optim = False
elif template == "Smooth":
flavor = "wyvern"
step_size = 0.10
cutn = 120
normal_flip_optim = False
tv_weight = 10
elif template == "Subtle MSE":
mse_init_weight = 0.07
mse_decay_rate = 130
mse_step_size = 0.2
mse_cutn = 100
mse_cut_pow = 0.6
elif template == "Balanced":
cutn = 130
cut_pow = 1
step_size = 0.16
final_step_size = 0
ema_val = 0.98
mse_init_weight = 0.2
mse_decay_rate = 130
mse_with_zeros = True
mse_step_size = 0.9
mse_cutn = 50
mse_cut_pow = 0.8
normal_flip_optim = True
elif template == "Size: Square":
width = 450
height = 450
elif template == "Size: Landscape":
width = 480
height = 336
elif template == "Size: Poster":
width = 336
height = 480
elif template == "Negative Prompt":
prompts = prompts.replace(":", ":-")
prompts = prompts.replace(":--", ":")
elif template == "Hyper Fast Results":
step_size = 1
ema_val = 0.3
cutn = 30
elif template == "Better Quality":
prompts = (
prompts + ":1 | Watermark, blurry, cropped, confusing, cut, incoherent:-1"
)
mse_decay = 0
if use_mse == False:
mse_init_weight = 0.0
else:
mse_decay = mse_init_weight / mse_epoches
if seed == -1:
seed = None
if init_image == "None":
init_image = None
if target_images == "None" or not target_images:
target_images = []
else:
target_images = target_images.split("|")
target_images = [image.strip() for image in target_images]
prompts = [phrase.strip() for phrase in prompts.split("|")]
if prompts == [""]:
prompts = []
altprompts = [phrase.strip() for phrase in altprompts.split("|")]
if altprompts == [""]:
altprompts = []
if mse_images_interval == 0:
mse_images_interval = images_interval
if mse_step_size == 0:
mse_step_size = step_size
if mse_cutn == 0:
mse_cutn = cutn
if mse_cut_pow == 0:
mse_cut_pow = cut_pow
if alt_cut_pow == 0:
alt_cut_pow = cut_pow
if alt_mse_cut_pow == 0:
alt_mse_cut_pow = mse_cut_pow
augs = nn.Sequential(
K.RandomHorizontalFlip(p=0.5),
K.RandomSharpness(0.3, p=0.4),
K.RandomGaussianBlur((3, 3), (4.5, 4.5), p=0.3),
# K.RandomGaussianNoise(p=0.5),
# K.RandomElasticTransform(kernel_size=(33, 33), sigma=(7,7), p=0.2),
K.RandomAffine(
degrees=30, translate=0.1, p=0.8, padding_mode="border"
), # padding_mode=2
K.RandomPerspective(
0.2,
p=0.4,
),
K.ColorJitter(hue=0.01, saturation=0.01, p=0.7),
K.RandomGrayscale(p=0.1),
)
if altprompt_mode == "normal":
altaugs = nn.Sequential(
K.RandomRotation(degrees=90.0, return_transform=True),
K.RandomHorizontalFlip(p=0.5),
K.RandomSharpness(0.3, p=0.4),
K.RandomGaussianBlur((3, 3), (4.5, 4.5), p=0.3),
# K.RandomGaussianNoise(p=0.5),
# K.RandomElasticTransform(kernel_size=(33, 33), sigma=(7,7), p=0.2),
K.RandomAffine(
degrees=30, translate=0.1, p=0.8, padding_mode="border"
), # padding_mode=2
K.RandomPerspective(
0.2,
p=0.4,
),
K.ColorJitter(hue=0.01, saturation=0.01, p=0.7),
K.RandomGrayscale(p=0.1),
)
elif altprompt_mode == "flipped":
altaugs = nn.Sequential(
K.RandomHorizontalFlip(p=0.5),
# K.RandomRotation(degrees=90.0),
K.RandomVerticalFlip(p=1),
K.RandomSharpness(0.3, p=0.4),
K.RandomGaussianBlur((3, 3), (4.5, 4.5), p=0.3),
# K.RandomGaussianNoise(p=0.5),
# K.RandomElasticTransform(kernel_size=(33, 33), sigma=(7,7), p=0.2),
K.RandomAffine(
degrees=30, translate=0.1, p=0.8, padding_mode="border"
), # padding_mode=2
K.RandomPerspective(
0.2,
p=0.4,
),
K.ColorJitter(hue=0.01, saturation=0.01, p=0.7),
K.RandomGrayscale(p=0.1),
)
elif altprompt_mode == "sideways":
altaugs = nn.Sequential(
K.RandomHorizontalFlip(p=0.5),
# K.RandomRotation(degrees=90.0),
K.RandomVerticalFlip(p=1),
K.RandomSharpness(0.3, p=0.4),
K.RandomGaussianBlur((3, 3), (4.5, 4.5), p=0.3),
# K.RandomGaussianNoise(p=0.5),
# K.RandomElasticTransform(kernel_size=(33, 33), sigma=(7,7), p=0.2),
K.RandomAffine(
degrees=30, translate=0.1, p=0.8, padding_mode="border"
), # padding_mode=2
K.RandomPerspective(
0.2,
p=0.4,
),
K.ColorJitter(hue=0.01, saturation=0.01, p=0.7),
K.RandomGrayscale(p=0.1),
)
if multiple_prompt_batches:
prompts_all = str(prompts).split("~")
else:
prompts_all = prompts
multiple_prompt_batches_iter = iterations
if multiple_prompt_batches:
mtpl_prmpts_btchs = len(prompts_all)
else:
mtpl_prmpts_btchs = 1
# print(mtpl_prmpts_btchs)
steps_path = "./"
zoom_path = "./"
path = "./"
iterations = multiple_prompt_batches_iter
for pr in range(0, mtpl_prmpts_btchs):
# print(prompts_all[pr].replace('[\'', '').replace('\']', ''))
if multiple_prompt_batches:
prompts = prompts_all[pr].replace("['", "").replace("']", "")
if zoom:
mdf_iter = round(iterations / zoom_frequency)
else:
mdf_iter = 2
zoom_frequency = iterations
for iter in range(1, mdf_iter):
if zoom:
if iter != 0:
image = Image.open("progress.png")
area = (0, 0, width - zoom_speed, height - zoom_speed)
cropped_img = image.crop(area)
cropped_img.show()
new_image = cropped_img.resize((width, height))
new_image.save("zoom.png")
init_image = "zoom.png"
args = argparse.Namespace(
prompts=prompts,
altprompts=altprompts,
image_prompts=target_images,
noise_prompt_seeds=[],
noise_prompt_weights=[],
size=[width, height],
init_image=init_image,
png=transparent_png,
init_weight=mse_init_weight,
#vqgan_model=model_names[model],
step_size=step_size,
start_step_size=start_step_size,
final_step_size=final_step_size,
cutn=cutn,
cut_pow=cut_pow,
mse_cutn=mse_cutn,
mse_cut_pow=mse_cut_pow,
mse_step_size=mse_step_size,
display_freq=images_interval,
mse_display_freq=mse_images_interval,
max_iterations=zoom_frequency,
mse_end=0,
seed=seed,
folder_name=folder_name,
save_to_drive=save_to_drive,
mse_decay_rate=mse_decay_rate,
mse_decay=mse_decay,
mse_with_zeros=mse_with_zeros,
normal_flip_optim=normal_flip_optim,
ema_val=ema_val,
augs=augs,
altaugs=altaugs,
alt_cut_pow=alt_cut_pow,
alt_mse_cut_pow=alt_mse_cut_pow,
is_gumbel=is_gumbel,
gen_seed=gen_seed,
)
mh = ModelHost(args)
x = 0
#for x in range(batch_size):
mh.setup_model(x)
mh.run(x)
image_data = Image.open(args2.image_file)
os.remove(args2.image_file)
return(image_data)
#return(last_iter)
#x = x + 1
if zoom:
files = os.listdir(steps_path)
for index, file in enumerate(files):
os.rename(
os.path.join(steps_path, file),
os.path.join(
steps_path,
"".join([str(index + 1 + zoom_frequency * iter), ".png"]),
),
)
index = index + 1
from pathlib import Path
import shutil
src_path = steps_path
trg_path = zoom_path
for src_file in range(1, mdf_iter):
shutil.move(os.path.join(src_path, src_file), trg_path)
##################### START GRADIO HERE ############################
image = gr.outputs.Image(type="pil", label="Your result")
#def cvt_2_base64(file_name):
# with open(file_name , "rb") as image_file :
# data = base64.b64encode(image_file.read())
# return data.decode('utf-8')
#base64image = "data:image/jpg;base64,"+cvt_2_base64('flavors.jpg')
#markdown = gr.Markdown("<img src='"+base64image+"' />")
#def test(raw_input):
# pass
#setattr(markdown, "requires_permissions", False)
#setattr(markdown, "label", "Flavors")
#setattr(markdown, "preprocess", test)
iface = gr.Interface(
fn=run_all,
inputs=[
gr.inputs.Textbox(label="Prompt - try adding increments to your prompt such as 'oil on canvas', 'a painting', 'a book cover'",default="the milky way in a milk bottle"),
gr.inputs.Slider(label="Width", default=256, minimum=32, step=32, maximum=512),
gr.inputs.Slider(label="Height", default=256, minimum=32, step=32, maximum=512),
gr.inputs.Dropdown(label="Style - Hyper Fast Results is fast but compromises a bit of the quality",choices=["Default","Balanced","Detailed","Consistent Creativity","Realistic","Smooth","Subtle MSE","Hyper Fast Results"],default="Hyper Fast Results"),
gr.inputs.Slider(label="Steps - more steps can increase quality but will take longer to generate. All styles that are not Hyper Fast need at least 200 steps",default=50,maximum=300,minimum=1,step=1),
gr.inputs.Dropdown(label="Flavor - pick a flavor for the style of the images",choices=["ginger", "cumin", "holywater", "zynth", "wyvern", "aaron", "moth", "juu"]),
#markdown
],
outputs=image,
title="Generate images from text with VQGAN+CLIP (Hypertron v2)",
description="<div>By typing a prompt and pressing submit you can generate images based on this prompt. <a href='https://arxiv.org/abs/2204.08583' target='_blank'>VQGAN+CLIP</a> is a combination of a GAN and CLIP, as explained here. This approach innagurated the open source AI art scene, and the Hypertron v2 implementation compiles many improvements.</a><br>This Spaces UI to the model was assembled by <a style='color: rgb(99, 102, 241);font-weight:bold' href='https://twitter.com/multimodalart' target='_blank'>@multimodalart</a>, keep up with the <a style='color: rgb(99, 102, 241);' href='https://multimodal.art/news' target='_blank'>latest multimodal ai art news here</a> and consider <a style='color: rgb(99, 102, 241);' href='https://www.patreon.com/multimodalart' target='_blank'>supporting us on Patreon</a>",
article="<h4 style='font-size: 110%;margin-top:.5em'>Biases acknowledgment</h4><div>Despite how impressive being able to turn text into image is, beware to the fact that this model may output content that reinforces or exarcbates societal biases. According to the <a href='https://arxiv.org/abs/2112.10752' target='_blank'>Latent Diffusion paper</a>:<i> \"Deep learning modules tend to reproduce or exacerbate biases that are already present in the data\"</i>. The model was trained on both the Imagenet dataset and in an undisclosed dataset by OpenAI.</div><h4 style='font-size: 110%;margin-top:1em'>Who owns the images produced by this demo?</h4><div>Definetly not me! Probably you do. I say probably because the Copyright discussion about AI generated art is ongoing. So <a href='https://www.theverge.com/2022/2/21/22944335/us-copyright-office-reject-ai-generated-art-recent-entrance-to-paradise' target='_blank'>it may be the case that everything produced here falls automatically into the public domain</a>. But in any case it is either yours or is in the public domain.</div>"
)
iface.launch(enable_queue=True)