Spaces:
Paused
Paused
apolinario
commited on
Commit
•
ad1fd8e
1
Parent(s):
ca37dd4
VQGAN attempt
Browse files- app.py +34 -17
- flavors.jpg +0 -0
- requirements.txt +2 -1
app.py
CHANGED
@@ -32,7 +32,7 @@ import subprocess
|
|
32 |
import imageio
|
33 |
from PIL import ImageFile, Image
|
34 |
import time
|
35 |
-
|
36 |
|
37 |
import hashlib
|
38 |
from PIL.PngImagePlugin import PngImageFile, PngInfo
|
@@ -41,6 +41,7 @@ import urllib.request
|
|
41 |
from random import randint
|
42 |
from pathvalidate import sanitize_filename
|
43 |
from huggingface_hub import hf_hub_download
|
|
|
44 |
|
45 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
46 |
print("Using device:", device)
|
@@ -75,7 +76,7 @@ perceptor = (
|
|
75 |
.requires_grad_(False)
|
76 |
.to(device)
|
77 |
)
|
78 |
-
def run_all(user_input,num_steps, template, width,height):
|
79 |
import random
|
80 |
#if uploaded_file is not None:
|
81 |
#uploaded_folder = f"{DefaultPaths.root_path}/uploaded"
|
@@ -89,8 +90,7 @@ def run_all(user_input,num_steps, template, width,height):
|
|
89 |
#pass
|
90 |
#else:
|
91 |
image_path = None
|
92 |
-
|
93 |
-
|
94 |
args2 = argparse.Namespace(
|
95 |
prompt=user_input,
|
96 |
seed=int(random.randint(0, 2147483647)),
|
@@ -103,7 +103,7 @@ def run_all(user_input,num_steps, template, width,height):
|
|
103 |
template=template,
|
104 |
vqgan_model='ImageNet 16384',
|
105 |
seed_image=image_path,
|
106 |
-
image_file="
|
107 |
#frame_dir=intermediary_folder,
|
108 |
)
|
109 |
if args2.seed is not None:
|
@@ -1299,6 +1299,7 @@ def run_all(user_input,num_steps, template, width,height):
|
|
1299 |
z_orig = z.tensor.clone()
|
1300 |
z.requires_grad_(True)
|
1301 |
# opt = optim.AdamW(z.parameters(), lr=args.mse_step_size, weight_decay=0.00000000)
|
|
|
1302 |
if self.normal_flip_optim == True:
|
1303 |
if randint(1, 2) == 1:
|
1304 |
opt = torch.optim.AdamW(
|
@@ -1430,8 +1431,7 @@ def run_all(user_input,num_steps, template, width,height):
|
|
1430 |
|
1431 |
sys.stdout.write("Iteration {}".format(i) + "\n")
|
1432 |
sys.stdout.flush()
|
1433 |
-
|
1434 |
-
if i % args2.update == 0:
|
1435 |
self.checkin(i, lossAll, x)
|
1436 |
|
1437 |
loss = sum(lossAll)
|
@@ -1493,6 +1493,8 @@ def run_all(user_input,num_steps, template, width,height):
|
|
1493 |
def run(self, x):
|
1494 |
j = 0
|
1495 |
try:
|
|
|
|
|
1496 |
before_start_time = time.perf_counter()
|
1497 |
total_steps = int(args.max_iterations + args.mse_end) - 1
|
1498 |
for _ in range(total_steps):
|
@@ -1516,9 +1518,9 @@ def run_all(user_input,num_steps, template, width,height):
|
|
1516 |
import shutil
|
1517 |
import os
|
1518 |
|
1519 |
-
image_data = Image.open(args2.image_file)
|
1520 |
-
|
1521 |
-
return(image_data)
|
1522 |
|
1523 |
except KeyboardInterrupt:
|
1524 |
pass
|
@@ -2289,14 +2291,16 @@ def run_all(user_input,num_steps, template, width,height):
|
|
2289 |
is_gumbel=is_gumbel,
|
2290 |
gen_seed=gen_seed,
|
2291 |
)
|
2292 |
-
|
2293 |
mh = ModelHost(args)
|
2294 |
x = 0
|
2295 |
|
2296 |
#for x in range(batch_size):
|
2297 |
mh.setup_model(x)
|
2298 |
-
|
2299 |
-
|
|
|
|
|
|
|
2300 |
#x = x + 1
|
2301 |
|
2302 |
if zoom:
|
@@ -2322,18 +2326,31 @@ def run_all(user_input,num_steps, template, width,height):
|
|
2322 |
|
2323 |
##################### START GRADIO HERE ############################
|
2324 |
image = gr.outputs.Image(type="pil", label="Your result")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2325 |
iface = gr.Interface(
|
2326 |
fn=run_all,
|
2327 |
inputs=[
|
2328 |
gr.inputs.Textbox(label="Prompt - try adding increments to your prompt such as 'oil on canvas', 'a painting', 'a book cover'",default="chalk pastel drawing of a dog wearing a funny hat"),
|
2329 |
-
gr.inputs.Slider(label="Steps - more steps can increase quality but will take longer to generate",default=
|
2330 |
-
gr.inputs.Dropdown(label="
|
|
|
|
|
2331 |
gr.inputs.Radio(label="Width", choices=[32,64,128,256,512],default=256),
|
2332 |
gr.inputs.Radio(label="Height", choices=[32,64,128,256,512],default=256),
|
2333 |
],
|
2334 |
outputs=image,
|
2335 |
-
title="Generate images from text with VQGAN+CLIP",
|
2336 |
#description="<div>By typing a prompt and pressing submit you can generate images based on this prompt. <a href='https://github.com/CompVis/latent-diffusion' target='_blank'>Latent Diffusion</a> is a text-to-image model created by <a href='https://github.com/CompVis' target='_blank'>CompVis</a>, trained on the <a href='https://laion.ai/laion-400-open-dataset/'>LAION-400M dataset.</a><br>This UI to the model was assembled by <a style='color: rgb(245, 158, 11);font-weight:bold' href='https://twitter.com/multimodalart' target='_blank'>@multimodalart</a></div>",
|
2337 |
#article="<h4 style='font-size: 110%;margin-top:.5em'>Biases acknowledgment</h4><div>Despite how impressive being able to turn text into image is, beware to the fact that this model may output content that reinforces or exarcbates societal biases. According to the <a href='https://arxiv.org/abs/2112.10752' target='_blank'>Latent Diffusion paper</a>:<i> \"Deep learning modules tend to reproduce or exacerbate biases that are already present in the data\"</i>. The model was trained on an unfiltered version the LAION-400M dataset, which scrapped non-curated image-text-pairs from the internet (the exception being the the removal of illegal content) and is meant to be used for research purposes, such as this one. <a href='https://laion.ai/laion-400-open-dataset/' target='_blank'>You can read more on LAION's website</a></div><h4 style='font-size: 110%;margin-top:1em'>Who owns the images produced by this demo?</h4><div>Definetly not me! Probably you do. I say probably because the Copyright discussion about AI generated art is ongoing. So <a href='https://www.theverge.com/2022/2/21/22944335/us-copyright-office-reject-ai-generated-art-recent-entrance-to-paradise' target='_blank'>it may be the case that everything produced here falls automatically into the public domain</a>. But in any case it is either yours or is in the public domain.</div>"
|
2338 |
)
|
2339 |
-
iface.launch(
|
|
|
32 |
import imageio
|
33 |
from PIL import ImageFile, Image
|
34 |
import time
|
35 |
+
import base64
|
36 |
|
37 |
import hashlib
|
38 |
from PIL.PngImagePlugin import PngImageFile, PngInfo
|
|
|
41 |
from random import randint
|
42 |
from pathvalidate import sanitize_filename
|
43 |
from huggingface_hub import hf_hub_download
|
44 |
+
import shortuuid
|
45 |
|
46 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
47 |
print("Using device:", device)
|
|
|
76 |
.requires_grad_(False)
|
77 |
.to(device)
|
78 |
)
|
79 |
+
def run_all(user_input, num_steps, flavor, markdown, template, width,height):
|
80 |
import random
|
81 |
#if uploaded_file is not None:
|
82 |
#uploaded_folder = f"{DefaultPaths.root_path}/uploaded"
|
|
|
90 |
#pass
|
91 |
#else:
|
92 |
image_path = None
|
93 |
+
url = shortuuid.uuid()
|
|
|
94 |
args2 = argparse.Namespace(
|
95 |
prompt=user_input,
|
96 |
seed=int(random.randint(0, 2147483647)),
|
|
|
103 |
template=template,
|
104 |
vqgan_model='ImageNet 16384',
|
105 |
seed_image=image_path,
|
106 |
+
image_file=f"{url}.png",
|
107 |
#frame_dir=intermediary_folder,
|
108 |
)
|
109 |
if args2.seed is not None:
|
|
|
1299 |
z_orig = z.tensor.clone()
|
1300 |
z.requires_grad_(True)
|
1301 |
# opt = optim.AdamW(z.parameters(), lr=args.mse_step_size, weight_decay=0.00000000)
|
1302 |
+
print("Step size inside:", args.step_size)
|
1303 |
if self.normal_flip_optim == True:
|
1304 |
if randint(1, 2) == 1:
|
1305 |
opt = torch.optim.AdamW(
|
|
|
1431 |
|
1432 |
sys.stdout.write("Iteration {}".format(i) + "\n")
|
1433 |
sys.stdout.flush()
|
1434 |
+
if i % (args2.iterations-2) == 0:
|
|
|
1435 |
self.checkin(i, lossAll, x)
|
1436 |
|
1437 |
loss = sum(lossAll)
|
|
|
1493 |
def run(self, x):
|
1494 |
j = 0
|
1495 |
try:
|
1496 |
+
print("Step size: ", args.step_size)
|
1497 |
+
print("Step MSE size: ", args.mse_step_size)
|
1498 |
before_start_time = time.perf_counter()
|
1499 |
total_steps = int(args.max_iterations + args.mse_end) - 1
|
1500 |
for _ in range(total_steps):
|
|
|
1518 |
import shutil
|
1519 |
import os
|
1520 |
|
1521 |
+
#image_data = Image.open(args2.image_file)
|
1522 |
+
#os.remove(args2.image_file)
|
1523 |
+
#return(image_data)
|
1524 |
|
1525 |
except KeyboardInterrupt:
|
1526 |
pass
|
|
|
2291 |
is_gumbel=is_gumbel,
|
2292 |
gen_seed=gen_seed,
|
2293 |
)
|
|
|
2294 |
mh = ModelHost(args)
|
2295 |
x = 0
|
2296 |
|
2297 |
#for x in range(batch_size):
|
2298 |
mh.setup_model(x)
|
2299 |
+
mh.run(x)
|
2300 |
+
image_data = Image.open(args2.image_file)
|
2301 |
+
os.remove(args2.image_file)
|
2302 |
+
return(image_data)
|
2303 |
+
#return(last_iter)
|
2304 |
#x = x + 1
|
2305 |
|
2306 |
if zoom:
|
|
|
2326 |
|
2327 |
##################### START GRADIO HERE ############################
|
2328 |
image = gr.outputs.Image(type="pil", label="Your result")
|
2329 |
+
def cvt_2_base64(file_name):
|
2330 |
+
with open(file_name , "rb") as image_file :
|
2331 |
+
data = base64.b64encode(image_file.read())
|
2332 |
+
return data.decode('utf-8')
|
2333 |
+
base64image = "data:image/jpg;base64,"+cvt_2_base64('flavors.jpg')
|
2334 |
+
markdown = gr.Markdown("<img src='"+base64image+"' />")
|
2335 |
+
def test(raw_input):
|
2336 |
+
pass
|
2337 |
+
setattr(markdown, "requires_permissions", False)
|
2338 |
+
setattr(markdown, "label", "Flavors")
|
2339 |
+
setattr(markdown, "preprocess", test)
|
2340 |
iface = gr.Interface(
|
2341 |
fn=run_all,
|
2342 |
inputs=[
|
2343 |
gr.inputs.Textbox(label="Prompt - try adding increments to your prompt such as 'oil on canvas', 'a painting', 'a book cover'",default="chalk pastel drawing of a dog wearing a funny hat"),
|
2344 |
+
gr.inputs.Slider(label="Steps - more steps can increase quality but will take longer to generate",default=50,maximum=250,minimum=1,step=1),
|
2345 |
+
gr.inputs.Dropdown(label="Flavor",choices=["ginger", "cumin", "holywater", "zynth", "wyvern", "aaron", "moth", "juu", "custom"]),
|
2346 |
+
markdown,
|
2347 |
+
gr.inputs.Dropdown(label="Style",choices=["Default","Balanced","Detailed","Consistent Creativity","Realistic","Smooth","Subtle MSE","Hyper Fast Results"],default="Hyper Fast Results"),
|
2348 |
gr.inputs.Radio(label="Width", choices=[32,64,128,256,512],default=256),
|
2349 |
gr.inputs.Radio(label="Height", choices=[32,64,128,256,512],default=256),
|
2350 |
],
|
2351 |
outputs=image,
|
2352 |
+
title="Generate images from text with VQGAN+CLIP (Hypertron v2)",
|
2353 |
#description="<div>By typing a prompt and pressing submit you can generate images based on this prompt. <a href='https://github.com/CompVis/latent-diffusion' target='_blank'>Latent Diffusion</a> is a text-to-image model created by <a href='https://github.com/CompVis' target='_blank'>CompVis</a>, trained on the <a href='https://laion.ai/laion-400-open-dataset/'>LAION-400M dataset.</a><br>This UI to the model was assembled by <a style='color: rgb(245, 158, 11);font-weight:bold' href='https://twitter.com/multimodalart' target='_blank'>@multimodalart</a></div>",
|
2354 |
#article="<h4 style='font-size: 110%;margin-top:.5em'>Biases acknowledgment</h4><div>Despite how impressive being able to turn text into image is, beware to the fact that this model may output content that reinforces or exarcbates societal biases. According to the <a href='https://arxiv.org/abs/2112.10752' target='_blank'>Latent Diffusion paper</a>:<i> \"Deep learning modules tend to reproduce or exacerbate biases that are already present in the data\"</i>. The model was trained on an unfiltered version the LAION-400M dataset, which scrapped non-curated image-text-pairs from the internet (the exception being the the removal of illegal content) and is meant to be used for research purposes, such as this one. <a href='https://laion.ai/laion-400-open-dataset/' target='_blank'>You can read more on LAION's website</a></div><h4 style='font-size: 110%;margin-top:1em'>Who owns the images produced by this demo?</h4><div>Definetly not me! Probably you do. I say probably because the Copyright discussion about AI generated art is ongoing. So <a href='https://www.theverge.com/2022/2/21/22944335/us-copyright-office-reject-ai-generated-art-recent-entrance-to-paradise' target='_blank'>it may be the case that everything produced here falls automatically into the public domain</a>. But in any case it is either yours or is in the public domain.</div>"
|
2355 |
)
|
2356 |
+
iface.launch()
|
flavors.jpg
ADDED
requirements.txt
CHANGED
@@ -25,4 +25,5 @@ pathvalidate
|
|
25 |
stegano
|
26 |
imgtag
|
27 |
timm
|
28 |
-
python-xmp-toolkit
|
|
|
|
25 |
stegano
|
26 |
imgtag
|
27 |
timm
|
28 |
+
python-xmp-toolkit
|
29 |
+
shortuuid
|