Saliency maps
Browse files- app.py +49 -4
- images/real_Farsi.jpg +0 -0
- images/real_Ruqaa.jpg +0 -0
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
|
2 |
# %%
|
|
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
5 |
# import random as rn
|
@@ -7,8 +8,11 @@ import numpy as np
|
|
7 |
import tensorflow as tf
|
8 |
import cv2
|
9 |
|
10 |
-
|
11 |
|
|
|
|
|
|
|
12 |
|
13 |
#%%
|
14 |
def parse_image(image):
|
@@ -53,25 +57,66 @@ model.compile(loss=tf.keras.losses.BinaryCrossentropy(from_logits=False), optimi
|
|
53 |
|
54 |
model.load_weights('weights.h5')
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
#%%
|
57 |
def segment(image):
|
|
|
|
|
58 |
image = parse_image(image)
|
59 |
-
|
60 |
output = model.predict(image)
|
61 |
# print(output)
|
62 |
labels = {
|
63 |
"farsi" : 1-float(output),
|
64 |
"ruqaa" : float(output)
|
65 |
}
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
iface = gr.Interface(fn=segment,
|
|
|
|
|
|
|
|
|
|
|
69 |
inputs="image",
|
70 |
-
outputs=
|
|
|
|
|
|
|
71 |
examples=[["images/Farsi_1.jpg"],
|
72 |
["images/Farsi_2.jpg"],
|
|
|
73 |
["images/Ruqaa_1.jpg"],
|
74 |
["images/Ruqaa_2.jpg"],
|
75 |
["images/Ruqaa_3.jpg"],
|
|
|
76 |
]).launch()
|
77 |
# %%
|
|
|
1 |
|
2 |
# %%
|
3 |
+
from cProfile import label
|
4 |
import gradio as gr
|
5 |
import numpy as np
|
6 |
# import random as rn
|
|
|
8 |
import tensorflow as tf
|
9 |
import cv2
|
10 |
|
11 |
+
tf.config.experimental.set_visible_devices([], 'GPU')
|
12 |
|
13 |
+
#%% constantes
|
14 |
+
COLOR = np.array([163, 23, 252])/255.0
|
15 |
+
ALPHA = 0.8
|
16 |
|
17 |
#%%
|
18 |
def parse_image(image):
|
|
|
57 |
|
58 |
model.load_weights('weights.h5')
|
59 |
|
60 |
+
#%%
|
61 |
+
|
62 |
+
def saliency_map(img):
|
63 |
+
"""
|
64 |
+
return the normalized gradients overs the image, and also the prediction of the model
|
65 |
+
"""
|
66 |
+
inp = tf.convert_to_tensor(
|
67 |
+
img[None, :, :, None],
|
68 |
+
dtype = tf.float32
|
69 |
+
)
|
70 |
+
inp_var = tf.Variable(inp)
|
71 |
+
|
72 |
+
with tf.GradientTape() as tape:
|
73 |
+
pred = model(inp_var, training=False)
|
74 |
+
loss = pred[0][0]
|
75 |
+
grads = tape.gradient(loss, inp_var)
|
76 |
+
grads = tf.math.abs(grads) / (tf.math.reduce_max(tf.math.abs(grads))+1e-14)
|
77 |
+
return grads, round(float(model(inp_var, training = False)))
|
78 |
+
|
79 |
#%%
|
80 |
def segment(image):
|
81 |
+
# c = image
|
82 |
+
print(image.shape)
|
83 |
image = parse_image(image)
|
84 |
+
print(image.shape)
|
85 |
output = model.predict(image)
|
86 |
# print(output)
|
87 |
labels = {
|
88 |
"farsi" : 1-float(output),
|
89 |
"ruqaa" : float(output)
|
90 |
}
|
91 |
+
grads, _ = saliency_map(image[0, :, :, 0])
|
92 |
+
s_map = grads.numpy()[0, :, :, 0]
|
93 |
+
reconstructed_image = cv2.cvtColor(image.squeeze(0), cv2.COLOR_GRAY2RGB)
|
94 |
+
for i in range(reconstructed_image.shape[0]):
|
95 |
+
for j in range(reconstructed_image.shape[1]):
|
96 |
+
reconstructed_image[i, j, :] = reconstructed_image[i, j, :] * (1-ALPHA) + s_map[i, j]* COLOR * ALPHA
|
97 |
+
# reconstructed_image = reconstructed_image.astype(np.uint8)
|
98 |
+
V = reconstructed_image
|
99 |
+
# print("i shape:", i.shape)
|
100 |
+
# print("type(i):", type(i))
|
101 |
+
return labels, reconstructed_image
|
102 |
|
103 |
iface = gr.Interface(fn=segment,
|
104 |
+
description="""
|
105 |
+
This is an Arab Calligraphy Style Recognition.
|
106 |
+
This model predicts the style (binary classification) of the image.
|
107 |
+
The model also outputs the Saliency map.
|
108 |
+
""",
|
109 |
inputs="image",
|
110 |
+
outputs=[
|
111 |
+
gr.outputs.Label(num_top_classes=2, label="Style"),
|
112 |
+
gr.outputs.Image(label = "Saliency map")
|
113 |
+
],
|
114 |
examples=[["images/Farsi_1.jpg"],
|
115 |
["images/Farsi_2.jpg"],
|
116 |
+
["images/real_Farsi.jpg"],
|
117 |
["images/Ruqaa_1.jpg"],
|
118 |
["images/Ruqaa_2.jpg"],
|
119 |
["images/Ruqaa_3.jpg"],
|
120 |
+
["images/real_Ruqaa.jpg"],
|
121 |
]).launch()
|
122 |
# %%
|
images/real_Farsi.jpg
ADDED
images/real_Ruqaa.jpg
ADDED