Spaces:
Paused
Paused
File size: 6,582 Bytes
dc9eaa3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
class CNNPrenet(torch.nn.Module):
def __init__(self):
super(CNNPrenet, self).__init__()
# Define the layers using Sequential container
self.conv_layers = nn.Sequential(
nn.Conv1d(in_channels=1, out_channels=512, kernel_size=3, padding=1),
nn.BatchNorm1d(512),
nn.ReLU(),
nn.Dropout(0.1),
nn.Conv1d(in_channels=512, out_channels=512, kernel_size=3, padding=1),
nn.BatchNorm1d(512),
nn.ReLU(),
nn.Dropout(0.1),
nn.Conv1d(in_channels=512, out_channels=512, kernel_size=3, padding=1),
nn.BatchNorm1d(512),
nn.ReLU(),
nn.Dropout(0.1)
)
def forward(self, x):
# Add a new dimension for the channel
x = x.unsqueeze(1)
# Pass input through convolutional layers
x = self.conv_layers(x)
# Remove the channel dimension
x = x.squeeze(1)
# Scale the output to the range [-1, 1]
x = torch.tanh(x)
return x
class CNNDecoderPrenet(nn.Module):
def __init__(self, input_dim=80, hidden_dim=256, output_dim=256, final_dim=512, dropout_rate=0.5):
super(CNNDecoderPrenet, self).__init__()
self.layer1 = nn.Linear(input_dim, hidden_dim)
self.layer2 = nn.Linear(hidden_dim, output_dim)
self.linear_projection = nn.Linear(output_dim, final_dim) # Added linear projection
self.dropout = nn.Dropout(dropout_rate)
def forward(self, x):
# Transpose the input tensor to have the feature dimension as the last dimension
x = x.transpose(1, 2)
# Apply the linear layers
x = F.relu(self.layer1(x))
x = self.dropout(x)
x = F.relu(self.layer2(x))
x = self.dropout(x)
# Apply the linear projection
x = self.linear_projection(x)
x = x.transpose(1, 2)
return x
class CNNPostNet(torch.nn.Module):
"""
Conv Postnet
Arguments
---------
n_mel_channels: int
input feature dimension for convolution layers
postnet_embedding_dim: int
output feature dimension for convolution layers
postnet_kernel_size: int
postnet convolution kernal size
postnet_n_convolutions: int
number of convolution layers
postnet_dropout: float
dropout probability fot postnet
"""
def __init__(
self,
n_mel_channels=80,
postnet_embedding_dim=512,
postnet_kernel_size=5,
postnet_n_convolutions=5,
postnet_dropout=0.1,
):
super(CNNPostNet, self).__init__()
self.conv_pre = nn.Conv1d(
in_channels=n_mel_channels,
out_channels=postnet_embedding_dim,
kernel_size=postnet_kernel_size,
padding="same",
)
self.convs_intermedite = nn.ModuleList()
for i in range(1, postnet_n_convolutions - 1):
self.convs_intermedite.append(
nn.Conv1d(
in_channels=postnet_embedding_dim,
out_channels=postnet_embedding_dim,
kernel_size=postnet_kernel_size,
padding="same",
),
)
self.conv_post = nn.Conv1d(
in_channels=postnet_embedding_dim,
out_channels=n_mel_channels,
kernel_size=postnet_kernel_size,
padding="same",
)
self.tanh = nn.Tanh()
self.ln1 = nn.LayerNorm(postnet_embedding_dim)
self.ln2 = nn.LayerNorm(postnet_embedding_dim)
self.ln3 = nn.LayerNorm(n_mel_channels)
self.dropout1 = nn.Dropout(postnet_dropout)
self.dropout2 = nn.Dropout(postnet_dropout)
self.dropout3 = nn.Dropout(postnet_dropout)
def forward(self, x):
"""Computes the forward pass
Arguments
---------
x: torch.Tensor
a (batch, time_steps, features) input tensor
Returns
-------
output: torch.Tensor (the spectrogram predicted)
"""
x = self.conv_pre(x)
x = self.ln1(x.permute(0, 2, 1)).permute(0, 2, 1) # Transpose to [batch_size, feature_dim, sequence_length]
x = self.tanh(x)
x = self.dropout1(x)
for i in range(len(self.convs_intermedite)):
x = self.convs_intermedite[i](x)
x = self.ln2(x.permute(0, 2, 1)).permute(0, 2, 1) # Transpose to [batch_size, feature_dim, sequence_length]
x = self.tanh(x)
x = self.dropout2(x)
x = self.conv_post(x)
x = self.ln3(x.permute(0, 2, 1)).permute(0, 2, 1) # Transpose to [batch_size, feature_dim, sequence_length]
x = self.dropout3(x)
return x
class ScaledPositionalEncoding(nn.Module):
"""
This class implements the absolute sinusoidal positional encoding function
with an adaptive weight parameter alpha.
PE(pos, 2i) = sin(pos/(10000^(2i/dmodel)))
PE(pos, 2i+1) = cos(pos/(10000^(2i/dmodel)))
Arguments
---------
input_size: int
Embedding dimension.
max_len : int, optional
Max length of the input sequences (default 2500).
Example
-------
>>> a = torch.rand((8, 120, 512))
>>> enc = PositionalEncoding(input_size=a.shape[-1])
>>> b = enc(a)
>>> b.shape
torch.Size([1, 120, 512])
"""
def __init__(self, input_size, max_len=2500):
super().__init__()
if input_size % 2 != 0:
raise ValueError(
f"Cannot use sin/cos positional encoding with odd channels (got channels={input_size})"
)
self.max_len = max_len
self.alpha = nn.Parameter(torch.ones(1)) # Define alpha as a trainable parameter
pe = torch.zeros(self.max_len, input_size, requires_grad=False)
positions = torch.arange(0, self.max_len).unsqueeze(1).float()
denominator = torch.exp(
torch.arange(0, input_size, 2).float()
* -(math.log(10000.0) / input_size)
)
pe[:, 0::2] = torch.sin(positions * denominator)
pe[:, 1::2] = torch.cos(positions * denominator)
pe = pe.unsqueeze(0)
self.register_buffer("pe", pe)
def forward(self, x):
"""
Arguments
---------
x : tensor
Input feature shape (batch, time, fea)
"""
pe_scaled = self.pe[:, :x.size(1)].clone().detach() * self.alpha # Scale positional encoding by alpha
return pe_scaled
|