File size: 20,115 Bytes
5ebcc54
 
 
 
 
0b449a5
5ebcc54
 
 
eed1a5c
 
5ebcc54
 
725da8c
 
0b449a5
 
725da8c
0b449a5
 
 
 
 
5ebcc54
 
 
 
725da8c
 
 
5ebcc54
 
 
 
 
 
 
 
 
eed1a5c
 
7ce0b9c
 
eed1a5c
5ebcc54
 
 
725da8c
5ebcc54
 
 
 
 
725da8c
5ebcc54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
725da8c
5ebcc54
 
725da8c
 
5ebcc54
 
eed1a5c
be69bb4
0b449a5
be69bb4
5ebcc54
eed1a5c
be69bb4
 
 
eed1a5c
be69bb4
 
 
eed1a5c
725da8c
 
 
 
5ebcc54
 
 
 
 
 
 
 
 
 
 
 
725da8c
5ebcc54
 
 
 
 
725da8c
5ebcc54
 
 
 
 
725da8c
5ebcc54
 
 
725da8c
5ebcc54
 
 
 
 
 
 
 
 
 
725da8c
5ebcc54
 
 
 
 
 
 
 
 
725da8c
 
5ebcc54
 
 
 
 
 
 
 
725da8c
5ebcc54
 
 
 
725da8c
 
 
 
 
 
5ebcc54
 
 
725da8c
5ebcc54
725da8c
3893f84
5ebcc54
725da8c
5ebcc54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
725da8c
5ebcc54
 
 
 
 
 
 
 
725da8c
5ebcc54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
725da8c
5ebcc54
 
 
 
 
725da8c
5ebcc54
 
 
 
 
725da8c
5ebcc54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
725da8c
5ebcc54
 
 
725da8c
0b449a5
 
 
 
 
 
 
 
 
 
 
 
aee10cf
0b449a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aee10cf
0b449a5
 
 
 
aee10cf
 
0b449a5
5ebcc54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b449a5
 
 
 
 
aee10cf
0b449a5
 
5ebcc54
 
 
 
 
 
aee10cf
 
0b449a5
aee10cf
 
5ebcc54
 
 
 
 
 
 
 
725da8c
5ebcc54
 
725da8c
 
5ebcc54
725da8c
aee10cf
5ebcc54
0b449a5
aee10cf
 
 
 
 
0b449a5
 
aee10cf
0b449a5
 
725da8c
b73f599
aee10cf
3893f84
c8fbf76
5ebcc54
aee10cf
725da8c
aee10cf
 
 
 
 
 
 
5ebcc54
725da8c
5ebcc54
725da8c
 
 
5ebcc54
 
 
 
 
 
725da8c
 
 
 
 
 
 
 
 
 
aee10cf
 
725da8c
 
 
0b449a5
 
5ebcc54
 
 
 
 
 
 
 
 
 
 
 
 
725da8c
5ebcc54
 
 
725da8c
 
 
 
 
 
 
 
 
 
 
5ebcc54
 
 
 
 
 
 
 
 
 
 
 
725da8c
 
 
 
b73f599
725da8c
 
 
 
5ebcc54
 
725da8c
 
 
5ebcc54
725da8c
 
5ebcc54
 
 
 
 
 
 
 
 
 
 
725da8c
5ebcc54
725da8c
5ebcc54
 
 
 
 
 
 
725da8c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
import streamlit as st
import numpy as np
import base64
from io import BytesIO
from multilingual_clip import pt_multilingual_clip
from transformers import CLIPTokenizerFast, AutoTokenizer, CLIPModel
import torch
import logging
from os import environ
from parse import parse
from clickhouse_connect import get_client
environ['TOKENIZERS_PARALLELISM'] = 'true'


db_name_map = {
    "Unsplash Photos 25K": lambda feat: f"mqdb_demo.unsplash_25k_{feat}_indexer",
    "RSICD: Remote Sensing Images 11K": lambda feat: f"mqdb_demo.rsicd_{feat}_b_32",
}
feat_name_map = {
    'Vanilla CLIP': "clip",
    'CLIP finetuned on RSICD': "cliprsicd"
}


DB_NAME = "mqdb_demo.unsplash_25k_clip_indexer"
DIMS = 512
# Ignore some bad links (broken in the dataset already)
BAD_IDS = {'9_9hzZVjV8s', 'RDs0THr4lGs', 'vigsqYux_-8',
           'rsJtMXn3p_c', 'AcG-unN00gw', 'r1R_0ZNUcx0'}


@st.experimental_singleton(show_spinner=False)
def init_db():
    """ Initialize the Database Connection

    Returns:
        meta_field: Meta field that records if an image is viewed or not
        client:     Database connection object
    """
    r = parse("{http_pre}://{host}:{port}", st.secrets["DB_URL"])
    client = get_client(
        host=r['host'], port=r['port'], user=st.secrets["USER"], password=st.secrets["PASSWD"],
        interface=r['http_pre'],
    )
    meta_field = {}
    return meta_field, client


@st.experimental_singleton(show_spinner=False)
def init_query_num():
    print("init query_num")
    return 0


def query(xq, top_k=10):
    """ Query TopK matched w.r.t a given vector

    Args:
        xq (numpy.ndarray or list of floats): Query vector
        top_k (int, optional): Number of matched vectors. Defaults to 10.

    Returns:
        matches: list of Records object. Keys referrring to selected columns
    """
    attempt = 0
    xq = xq / np.linalg.norm(xq)
    while attempt < 3:
        try:
            xq_s = f"[{', '.join([str(float(fnum)) for fnum in list(xq)])}]"

            print('Excluded pre:', st.session_state.meta)
            if len(st.session_state.meta) > 0:
                exclude_list = ','.join(
                    [f'\'{i}\'' for i, v in st.session_state.meta.items() if v >= 1])
                print("Excluded:", exclude_list)
                # Using PREWHERE allows you to do column filter before vector search
                xc = st.session_state.index.query(f"SELECT id, url, vector,\
                        distance(vector, {xq_s}) AS dist\
                        FROM {db_name_map[st.session_state.db_name_ref](feat_name_map[st.session_state.feat_name])} \
                        WHERE id NOT IN ({exclude_list}) ORDER BY dist LIMIT {top_k}").named_results()
            else:
                xc = st.session_state.index.query(f"SELECT id, url, vector,\
                        distance(vector, {xq_s}) AS dist\
                        FROM {db_name_map[st.session_state.db_name_ref](feat_name_map[st.session_state.feat_name])} \
                        ORDER BY dist LIMIT {top_k}").named_results()
            real_xc = st.session_state.index.query(f"SELECT id, url, vector,\
                        distance(vector, {xq_s}) AS dist \
                        FROM {db_name_map[st.session_state.db_name_ref](feat_name_map[st.session_state.feat_name])} \
                        ORDER BY dist LIMIT {top_k}").named_results()
            top_k = [{k: v for k, v in r.items()} for r in real_xc]
            xc = [xi for xi in xc if xi['id'] not in st.session_state.meta or
                  st.session_state.meta[xi['id']] < 1]
            logging.info(
                f'{len(xc)} records returned, {[_i["id"] for _i in xc]}')
            matches = xc
            break
        except Exception as e:
            # force reload if we have trouble on connections or something else
            logging.warning(str(e))
            _, st.session_state.index = init_db()
            attempt += 1
            matches = []
    if len(matches) == 0:
        logging.error(f"No matches found for '{DB_NAME}'")
    return matches, top_k


@st.experimental_singleton(show_spinner=False)
def init_random_query():
    xq = np.random.rand(DIMS).tolist()
    return xq, xq.copy()


class Classifier:
    """ Zero-shot Classifier
    This Classifier provides proxy regarding to the user's reaction to the probed images.
    The proxy will replace the original query vector generated by prompted vector and finally
    give the user a satisfying retrieval result.

    This can be commonly seen in a recommendation system. The classifier will recommend more 
    precise result as it accumulating user's activity.
    """

    def __init__(self, xq: list):
        # initialize model with DIMS input size and 1 output
        # note that the bias is ignored, as we only focus on the inner product result
        self.model = torch.nn.Linear(DIMS, 1, bias=False)
        # convert initial query `xq` to tensor parameter to init weights
        init_weight = torch.Tensor(xq).reshape(1, -1)
        self.model.weight = torch.nn.Parameter(init_weight)
        # init loss and optimizer
        self.loss = torch.nn.BCEWithLogitsLoss()
        self.optimizer = torch.optim.SGD(self.model.parameters(), lr=0.1)

    def fit(self, X: list, y: list, iters: int = 5):
        # convert X and y to tensor
        X = torch.Tensor(X)
        y = torch.Tensor(y).reshape(-1, 1)
        for i in range(iters):
            # zero gradients
            self.optimizer.zero_grad()
            # Normalize the weight before inference
            # This will constrain the gradient or you will have an explosion on query vector
            self.model.weight.data = self.model.weight.data / \
                torch.norm(self.model.weight.data, p=2, dim=-1)
            # forward pass
            out = self.model(X)
            # compute loss
            loss = self.loss(out, y)
            # backward pass
            loss.backward()
            # update weights
            self.optimizer.step()

    def get_weights(self):
        xq = self.model.weight.detach().numpy()[0].tolist()
        return xq


class NormalizingLayer(torch.nn.Module):
    def forward(self, x):
        return x / torch.norm(x, dim=-1, keepdim=True)


def card(i, url):
    return f'<img id="img{i}" src="{url}" width="200px;">'


def card_with_conf(i, conf, url):
    conf = "%.4f" % (conf)
    return f'<img id="img{i}" src="{url}" width="200px;" style="margin:50px 50px"><div><p><b>Relevance: {conf}</b></p></div>'


def get_top_k(xq, top_k=9):
    """ wrapper function for query

    Args:
        xq (numpy.ndarray or list of floats): Query vector
        top_k (int, optional): Number of returned vectors. Defaults to 9.

    Returns:
        matches: See `query()`
    """
    matches = query(
        xq, top_k=top_k
    )
    return matches


def tune(X, y, iters=2):
    """ Train the Zero-shot Classifier

    Args:
        X (numpy.ndarray): Input vectors (retreived vectors)
        y (list of floats or numpy.ndarray): Scores given by user
        iters (int, optional): iterations of updates to be run
    """
    assert len(X) == len(y)
    # train the classifier
    st.session_state.clf.fit(X, y, iters=iters)
    # extract new vector
    st.session_state.xq = st.session_state.clf.get_weights()


def refresh_index():
    """ Clean the session
    """
    del st.session_state["meta"]
    st.session_state.meta = {}
    st.session_state.query_num = 0
    logging.info(f"Refresh for '{st.session_state.meta}'")
    init_db.clear()
    # refresh session states
    st.session_state.meta, st.session_state.index = init_db()
    del st.session_state.clf, st.session_state.xq


def calc_dist():
    xq = np.array(st.session_state.xq)
    orig_xq = np.array(st.session_state.orig_xq)
    return np.linalg.norm(xq - orig_xq)


def submit():
    """ Tune the model w.r.t given score from user.
    """
    st.session_state.query_num += 1
    matches = st.session_state.matches
    velocity = 1  # st.session_state.velocity
    scores = {}
    states = [
        st.session_state[f"input{i}"] for i in range(len(matches))
    ]
    for i, match in enumerate(matches):
        scores[match['id']] = float(states[i])
    # reset states to 1.0
    for i in range(len(matches)):
        st.session_state[f"input{i}"] = 1.0
    # get training data and labels
    X = list([match['vector'] for match in matches])
    y = [v for v in list(scores.values())]
    tune(X, y, iters=int(st.session_state.iters))
    # update record metadata after training
    for match in matches:
        st.session_state.meta[match['id']] = 1
    logging.info(f"Exclude List: {st.session_state.meta}")


def delete_element(element):
    del element


@st.experimental_singleton(show_spinner=False)
def init_clip_mlang():
    """ Initialize CLIP Model

    Returns:
        Tokenizer: CLIPTokenizerFast (which convert words into embeddings)
    """
    MODEL_ID = 'M-CLIP/XLM-Roberta-Large-Vit-B-32'
    clip = pt_multilingual_clip.MultilingualCLIP.from_pretrained(MODEL_ID)
    tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
    return tokenizer, clip


@st.experimental_singleton(show_spinner=False)
def init_clip_vanilla():
    """ Initialize CLIP Model

    Returns:
        Tokenizer: CLIPTokenizerFast (which convert words into embeddings)
    """
    MODEL_ID = "openai/clip-vit-base-patch32"
    tokenizer = CLIPTokenizerFast.from_pretrained(MODEL_ID)
    clip = CLIPModel.from_pretrained(MODEL_ID)
    return tokenizer, clip


@st.experimental_singleton(show_spinner=False)
def init_clip_rsicd():
    """ Initialize CLIP Model

    Returns:
        Tokenizer: CLIPTokenizerFast (which convert words into embeddings)
    """
    MODEL_ID = "flax-community/clip-rsicd"
    tokenizer = CLIPTokenizerFast.from_pretrained(MODEL_ID)
    clip = CLIPModel.from_pretrained(MODEL_ID)
    return tokenizer, clip


def prompt2vec_mlang(prompt: str, tokenizer, clip):
    """ Convert prompt into a computational vector

    Args:
        prompt (str): Text to be tokenized

    Returns:
        xq: vector from the tokenizer, representing the original prompt
    """
    out = clip.forward(prompt, tokenizer)
    xq = out.squeeze(0).cpu().detach().numpy().tolist()
    return xq


def prompt2vec_vanilla(prompt: str, tokenizer, clip):
    inputs = tokenizer(prompt, return_tensors='pt')
    out = clip.get_text_features(**inputs)
    xq = out.squeeze(0).cpu().detach().numpy().tolist()
    return xq


st.markdown("""
<link
  rel="stylesheet"
  href="https://fonts.googleapis.com/css?family=Roboto:300,400,500,700&display=swap"
/>
""", unsafe_allow_html=True)

messages = [
    f"""
    Find most relevant examples from a large visual dataset by combining text query and few-shot learning.
    """,
    f"""
    Then then you can adjust the weight on each image. Those weights should **represent how much it 
    can meet your preference**. You can either choose the images that match your prompt or change 
    your mind.

    You might notice that there is a iteration slide bar on the top of all retrieved images. This will
    control the speed of changes on vectors. More **iterations** will change the vector faster while 
    lower values on **iterations** will make the retrieval smoother.
    """,
    f"""
    This example will manage to train a classifier to distinguish between samples you want and samples 
    you don't want. By initializing the weight from prompt, you can get a good enough classifier to cluster
    images you want to search. If you think the result is not as perfect as you expected, you can also 
    supervise the classifer with **Relevance** annotation. If you cannot see any difference in Top-K 
    Retrieved results, try to enlarge **Number of Iteration**
    """,
    # TODO @ fangruil: fill the link with our tech blog
    f"""
    The app uses the [MyScale](http://mqdb.page.moqi.ai/mqdb-docs/) to store and query images 
    using vector search. All images are sourced from the 
    [Unsplash Lite dataset](https://unsplash-datasets.s3.amazonaws.com/lite/latest/unsplash-research-dataset-lite-latest.zip) 
    and encoded using [OpenAI's CLIP](https://huggingface.co/openai/clip-vit-base-patch32). We explain how
    it all works [here]().
    """
]

text_model_map = {
    'Multi Lingual': {'Vanilla CLIP': [prompt2vec_mlang, ]},
    'English': {'Vanilla CLIP': [prompt2vec_vanilla, ],
                'CLIP finetuned on RSICD': [prompt2vec_vanilla, ],
                }
}


with st.spinner("Connecting DB..."):
    st.session_state.meta, st.session_state.index = init_db()

with st.spinner("Loading Models..."):
    # Initialize CLIP model
    if 'xq' not in st.session_state:
        text_model_map['Multi Lingual']['Vanilla CLIP'].append(
            init_clip_mlang())
        text_model_map['English']['Vanilla CLIP'].append(init_clip_vanilla())
        text_model_map['English']['CLIP finetuned on RSICD'].append(
            init_clip_rsicd())
        st.session_state.query_num = 0

if 'xq' not in st.session_state:
    # If it's a fresh start
    if st.session_state.query_num < len(messages):
        msg = messages[st.session_state.query_num]
    else:
        msg = messages[-1]
    prompt = ''
    # Basic Layout
    with st.container():
        if 'prompt' in st.session_state:
            del st.session_state.prompt
        st.title("Visual Dataset Explorer")
        start = [st.empty(), st.empty(), st.empty(), st.empty(),
                 st.empty(), st.empty(), st.empty(), st.empty()]
        start[0].info(msg)
        start_col = start[1].columns(3)
        st.session_state.db_name_ref = start_col[0].selectbox(
            "Select Database:", list(db_name_map.keys()))
        st.session_state.lang = start_col[1].selectbox(
            "Select Language:", list(text_model_map.keys()))
        st.session_state.feat_name = start_col[2].selectbox("Select Image Feature:",
                                                            list(text_model_map[st.session_state.lang].keys()))
        if st.session_state.db_name_ref == "RSICD: Remote Sensing Images 11K":
            start[2].warning('If you are searching for Remote Sensing Images, \
                        try to use prompt "An aerial photograph of <your-real-query>" \
                        to obtain best search experience!')
        if len(prompt) > 0:
            st.session_state.prompt = prompt.replace(' ', '_')
        start[4].markdown(
            '<p style="color:gray;"> Don\'t know what to search? Try <b>Random</b>!</p>\
            <p>🌟 We also support multi-language search. Type any language you know to search! ⌨️ </p>',
            unsafe_allow_html=True)
        upld_model = start[6].file_uploader(
            "Or you can upload your previous run!", type='onnx')
        upld_btn = start[7].button(
            "Use Loaded Weights", disabled=upld_model is None)
        prompt = start[3].text_input(
            "Prompt:",
            value="An aerial photograph of "if st.session_state.db_name_ref == "RSICD: Remote Sensing Images 11K" else "",
            placeholder="Examples: playing corgi, 女人举着雨伞, mouette volant au-dessus de la mer, ガラスの花瓶の花 ...",)
        with start[5]:
            col = st.columns(8)
            has_no_prompt = (len(prompt) == 0 and upld_model is None)
            prompt_xq = col[6].button("Prompt", disabled=len(prompt) == 0)
            random_xq = col[7].button("Random", disabled=not (
                len(prompt) == 0 and upld_model is None))

    if random_xq:
        # Randomly pick a vector to query
        xq, orig_xq = init_random_query()
        st.session_state.xq = xq
        st.session_state.orig_xq = orig_xq
        _ = [elem.empty() for elem in start]
    elif prompt_xq or upld_btn:
        if upld_model is not None:
            # Import vector from a file
            import onnx
            from onnx import numpy_helper
            _model = onnx.load(upld_model)
            weights = _model.graph.initializer
            assert len(weights) == 1
            xq = numpy_helper.to_array(weights[0]).tolist()
            assert len(xq) == DIMS
            st.session_state.prompt = upld_model.name.split(".onnx")[
                0].replace(' ', '_')
        else:
            print(f"Input prompt is {prompt}")
            # Tokenize the vectors
            p2v_func, args = text_model_map[st.session_state.lang][st.session_state.feat_name]
            xq = p2v_func(prompt, *args)
        st.session_state.xq = xq
        st.session_state.orig_xq = xq
        _ = [elem.empty() for elem in start]

if 'xq' in st.session_state:
    # If it is not a fresh start
    if st.session_state.query_num+1 < len(messages):
        msg = messages[st.session_state.query_num+1]
    else:
        msg = messages[-1]
    # initialize classifier
    if 'clf' not in st.session_state:
        st.session_state.clf = Classifier(st.session_state.xq)

    # if we want to display images we end up here
    st.info(msg)
    # first retrieve images from pinecone
    st.session_state.matches, st.session_state.top_k = get_top_k(
        st.session_state.clf.get_weights(), top_k=9)

    # export the model into executable ONNX
    st.session_state.dnld_model = BytesIO()
    torch.onnx.export(torch.nn.Sequential(NormalizingLayer(), st.session_state.clf.model),
                      torch.as_tensor(st.session_state.xq).reshape(1, -1),
                      st.session_state.dnld_model,
                      input_names=['input'],
                      output_names=['output'])

    with st.container():
        with st.sidebar:
            with st.container():
                st.header("Top K Nearest in Database")
                for i, k in enumerate(st.session_state.top_k):
                    url = k["url"]
                    url += "?q=75&fm=jpg&w=200&fit=max"
                    if k["id"] not in BAD_IDS:
                        disabled = False
                    else:
                        disable = True
                    dist = np.matmul(st.session_state.clf.get_weights() / np.linalg.norm(st.session_state.clf.get_weights()),
                                     np.array(k["vector"]).T)
                    st.markdown(card_with_conf(i, dist, url),
                                unsafe_allow_html=True)
        dnld_nam = st.text_input('Download Name:',
                                 f'{(st.session_state.prompt if "prompt" in st.session_state else "model")}.onnx',
                                 max_chars=50)
        dnld_btn = st.download_button('Download your classifier!',
                                      st.session_state.dnld_model,
                                      dnld_nam,)
        # once retrieved, display them alongside checkboxes in a form
        with st.form("batch", clear_on_submit=False):
            st.session_state.iters = st.slider(
                "Number of Iterations to Update", min_value=0, max_value=10, step=1, value=2)
            col = st.columns([1, 9])
            col[0].form_submit_button("Train!", on_click=submit)
            col[1].form_submit_button(
                "Choose a new prompt", on_click=refresh_index)
            # we have three columns in the form
            cols = st.columns(3)
            for i, match in enumerate(st.session_state.matches):
                # find good url
                url = match["url"]
                url += "?q=75&fm=jpg&w=200&fit=max"
                if match["id"] not in BAD_IDS:
                    disabled = False
                else:
                    disable = True
                # the card shows an image and a checkbox
                cols[i % 3].markdown(card(i, url), unsafe_allow_html=True)
                # we access the values of the checkbox via st.session_state[f"input{i}"]
                cols[i % 3].slider(
                    "Relevance",
                    min_value=0.0,
                    max_value=1.0,
                    value=1.0,
                    step=0.05,
                    key=f"input{i}",
                    disabled=disabled
                )