import streamlit as st import numpy as np import base64 from io import BytesIO from multilingual_clip import pt_multilingual_clip from transformers import CLIPTokenizerFast, AutoTokenizer, CLIPModel import torch import logging from os import environ from parse import parse from clickhouse_connect import get_client environ['TOKENIZERS_PARALLELISM'] = 'true' db_name_map = { "Unsplash Photos 25K": lambda feat: f"mqdb_demo.unsplash_25k_{feat}_indexer", "RSICD: Remote Sensing Images 11K": lambda feat: f"mqdb_demo.rsicd_{feat}_b_32", } feat_name_map = { 'Vanilla CLIP': "clip", 'CLIP finetuned on RSICD': "cliprsicd" } DB_NAME = "mqdb_demo.unsplash_25k_clip_indexer" DIMS = 512 # Ignore some bad links (broken in the dataset already) BAD_IDS = {'9_9hzZVjV8s', 'RDs0THr4lGs', 'vigsqYux_-8', 'rsJtMXn3p_c', 'AcG-unN00gw', 'r1R_0ZNUcx0'} @st.experimental_singleton(show_spinner=False) def init_db(): """ Initialize the Database Connection Returns: meta_field: Meta field that records if an image is viewed or not client: Database connection object """ r = parse("{http_pre}://{host}:{port}", st.secrets["DB_URL"]) client = get_client( host=r['host'], port=r['port'], user=st.secrets["USER"], password=st.secrets["PASSWD"] ) meta_field = {} return meta_field, client @st.experimental_singleton(show_spinner=False) def init_query_num(): print("init query_num") return 0 def query(xq, top_k=10): """ Query TopK matched w.r.t a given vector Args: xq (numpy.ndarray or list of floats): Query vector top_k (int, optional): Number of matched vectors. Defaults to 10. Returns: matches: list of Records object. Keys referrring to selected columns """ attempt = 0 xq = xq / np.linalg.norm(xq) while attempt < 3: try: xq_s = f"[{', '.join([str(float(fnum)) for fnum in list(xq)])}]" print('Excluded pre:', st.session_state.meta) if len(st.session_state.meta) > 0: exclude_list = ','.join( [f'\'{i}\'' for i, v in st.session_state.meta.items() if v >= 1]) print("Excluded:", exclude_list) # Using PREWHERE allows you to do column filter before vector search xc = st.session_state.index.query(f"SELECT id, url, vector,\ distance(vector, {xq_s}) AS dist\ FROM {db_name_map[st.session_state.db_name_ref](feat_name_map[st.session_state.feat_name])} \ WHERE id NOT IN ({exclude_list}) ORDER BY dist LIMIT {top_k}").named_results() else: xc = st.session_state.index.query(f"SELECT id, url, vector,\ distance(vector, {xq_s}) AS dist\ FROM {db_name_map[st.session_state.db_name_ref](feat_name_map[st.session_state.feat_name])} \ ORDER BY dist LIMIT {top_k}").named_results() real_xc = st.session_state.index.query(f"SELECT id, url, vector,\ distance(vector, {xq_s}) AS dist \ FROM {db_name_map[st.session_state.db_name_ref](feat_name_map[st.session_state.feat_name])} \ ORDER BY dist LIMIT {top_k}").named_results() top_k = [{k: v for k, v in r.items()} for r in real_xc] xc = [xi for xi in xc if xi['id'] not in st.session_state.meta or st.session_state.meta[xi['id']] < 1] logging.info( f'{len(xc)} records returned, {[_i["id"] for _i in xc]}') matches = xc break except Exception as e: # force reload if we have trouble on connections or something else logging.warning(str(e)) _, st.session_state.index = init_db() attempt += 1 matches = [] if len(matches) == 0: logging.error(f"No matches found for '{DB_NAME}'") return matches, top_k @st.experimental_singleton(show_spinner=False) def init_random_query(): xq = np.random.rand(DIMS).tolist() return xq, xq.copy() class Classifier: """ Zero-shot Classifier This Classifier provides proxy regarding to the user's reaction to the probed images. The proxy will replace the original query vector generated by prompted vector and finally give the user a satisfying retrieval result. This can be commonly seen in a recommendation system. The classifier will recommend more precise result as it accumulating user's activity. """ def __init__(self, xq: list): # initialize model with DIMS input size and 1 output # note that the bias is ignored, as we only focus on the inner product result self.model = torch.nn.Linear(DIMS, 1, bias=False) # convert initial query `xq` to tensor parameter to init weights init_weight = torch.Tensor(xq).reshape(1, -1) self.model.weight = torch.nn.Parameter(init_weight) # init loss and optimizer self.loss = torch.nn.BCEWithLogitsLoss() self.optimizer = torch.optim.SGD(self.model.parameters(), lr=0.1) def fit(self, X: list, y: list, iters: int = 5): # convert X and y to tensor X = torch.Tensor(X) y = torch.Tensor(y).reshape(-1, 1) for i in range(iters): # zero gradients self.optimizer.zero_grad() # Normalize the weight before inference # This will constrain the gradient or you will have an explosion on query vector self.model.weight.data = self.model.weight.data / \ torch.norm(self.model.weight.data, p=2, dim=-1) # forward pass out = self.model(X) # compute loss loss = self.loss(out, y) # backward pass loss.backward() # update weights self.optimizer.step() def get_weights(self): xq = self.model.weight.detach().numpy()[0].tolist() return xq class NormalizingLayer(torch.nn.Module): def forward(self, x): return x / torch.norm(x, dim=-1, keepdim=True) def card(i, url): return f'' def card_with_conf(i, conf, url): conf = "%.4f" % (conf) return f'

Relevance: {conf}

' def get_top_k(xq, top_k=9): """ wrapper function for query Args: xq (numpy.ndarray or list of floats): Query vector top_k (int, optional): Number of returned vectors. Defaults to 9. Returns: matches: See `query()` """ matches = query( xq, top_k=top_k ) return matches def tune(X, y, iters=2): """ Train the Zero-shot Classifier Args: X (numpy.ndarray): Input vectors (retreived vectors) y (list of floats or numpy.ndarray): Scores given by user iters (int, optional): iterations of updates to be run """ assert len(X) == len(y) # train the classifier st.session_state.clf.fit(X, y, iters=iters) # extract new vector st.session_state.xq = st.session_state.clf.get_weights() def refresh_index(): """ Clean the session """ del st.session_state["meta"] st.session_state.meta = {} st.session_state.query_num = 0 logging.info(f"Refresh for '{st.session_state.meta}'") init_db.clear() # refresh session states st.session_state.meta, st.session_state.index = init_db() del st.session_state.clf, st.session_state.xq def calc_dist(): xq = np.array(st.session_state.xq) orig_xq = np.array(st.session_state.orig_xq) return np.linalg.norm(xq - orig_xq) def submit(): """ Tune the model w.r.t given score from user. """ st.session_state.query_num += 1 matches = st.session_state.matches velocity = 1 # st.session_state.velocity scores = {} states = [ st.session_state[f"input{i}"] for i in range(len(matches)) ] for i, match in enumerate(matches): scores[match['id']] = float(states[i]) # reset states to 1.0 for i in range(len(matches)): st.session_state[f"input{i}"] = 1.0 # get training data and labels X = list([match['vector'] for match in matches]) y = [v for v in list(scores.values())] tune(X, y, iters=int(st.session_state.iters)) # update record metadata after training for match in matches: st.session_state.meta[match['id']] = 1 logging.info(f"Exclude List: {st.session_state.meta}") def delete_element(element): del element @st.experimental_singleton(show_spinner=False) def init_clip_mlang(): """ Initialize CLIP Model Returns: Tokenizer: CLIPTokenizerFast (which convert words into embeddings) """ MODEL_ID = 'M-CLIP/XLM-Roberta-Large-Vit-B-32' clip = pt_multilingual_clip.MultilingualCLIP.from_pretrained(MODEL_ID) tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) return tokenizer, clip @st.experimental_singleton(show_spinner=False) def init_clip_vanilla(): """ Initialize CLIP Model Returns: Tokenizer: CLIPTokenizerFast (which convert words into embeddings) """ MODEL_ID = "openai/clip-vit-base-patch32" tokenizer = CLIPTokenizerFast.from_pretrained(MODEL_ID) clip = CLIPModel.from_pretrained(MODEL_ID) return tokenizer, clip @st.experimental_singleton(show_spinner=False) def init_clip_rsicd(): """ Initialize CLIP Model Returns: Tokenizer: CLIPTokenizerFast (which convert words into embeddings) """ MODEL_ID = "flax-community/clip-rsicd" tokenizer = CLIPTokenizerFast.from_pretrained(MODEL_ID) clip = CLIPModel.from_pretrained(MODEL_ID) return tokenizer, clip def prompt2vec_mlang(prompt: str, tokenizer, clip): """ Convert prompt into a computational vector Args: prompt (str): Text to be tokenized Returns: xq: vector from the tokenizer, representing the original prompt """ out = clip.forward(prompt, tokenizer) xq = out.squeeze(0).cpu().detach().numpy().tolist() return xq def prompt2vec_vanilla(prompt: str, tokenizer, clip): inputs = tokenizer(prompt, return_tensors='pt') out = clip.get_text_features(**inputs) xq = out.squeeze(0).cpu().detach().numpy().tolist() return xq st.markdown(""" """, unsafe_allow_html=True) messages = [ f""" Find most relevant examples from a large visual dataset by combining text query and few-shot learning. """, f""" Then then you can adjust the weight on each image. Those weights should **represent how much it can meet your preference**. You can either choose the images that match your prompt or change your mind. You might notice that there is a iteration slide bar on the top of all retrieved images. This will control the speed of changes on vectors. More **iterations** will change the vector faster while lower values on **iterations** will make the retrieval smoother. """, f""" This example will manage to train a classifier to distinguish between samples you want and samples you don't want. By initializing the weight from prompt, you can get a good enough classifier to cluster images you want to search. If you think the result is not as perfect as you expected, you can also supervise the classifer with **Relevance** annotation. If you cannot see any difference in Top-K Retrieved results, try to enlarge **Number of Iteration** """, # TODO @ fangruil: fill the link with our tech blog f""" The app uses the [MyScale](http://mqdb.page.moqi.ai/mqdb-docs/) to store and query images using vector search. All images are sourced from the [Unsplash Lite dataset](https://unsplash-datasets.s3.amazonaws.com/lite/latest/unsplash-research-dataset-lite-latest.zip) and encoded using [OpenAI's CLIP](https://huggingface.co/openai/clip-vit-base-patch32). We explain how it all works [here](). """ ] text_model_map = { 'Multi Lingual': {'Vanilla CLIP': [prompt2vec_mlang, ]}, 'English': {'Vanilla CLIP': [prompt2vec_vanilla, ], 'CLIP finetuned on RSICD': [prompt2vec_vanilla, ], } } with st.spinner("Connecting DB..."): st.session_state.meta, st.session_state.index = init_db() with st.spinner("Loading Models..."): # Initialize CLIP model if 'xq' not in st.session_state: text_model_map['Multi Lingual']['Vanilla CLIP'].append( init_clip_mlang()) text_model_map['English']['Vanilla CLIP'].append(init_clip_vanilla()) text_model_map['English']['CLIP finetuned on RSICD'].append( init_clip_rsicd()) st.session_state.query_num = 0 if 'xq' not in st.session_state: # If it's a fresh start if st.session_state.query_num < len(messages): msg = messages[st.session_state.query_num] else: msg = messages[-1] prompt = '' # Basic Layout with st.container(): if 'prompt' in st.session_state: del st.session_state.prompt st.title("Visual Dataset Explorer") start = [st.empty(), st.empty(), st.empty(), st.empty(), st.empty(), st.empty(), st.empty(), st.empty()] start[0].info(msg) start_col = start[1].columns(3) st.session_state.db_name_ref = start_col[0].selectbox( "Select Database:", list(db_name_map.keys())) st.session_state.lang = start_col[1].selectbox( "Select Language:", list(text_model_map.keys())) st.session_state.feat_name = start_col[2].selectbox("Select Image Feature:", list(text_model_map[st.session_state.lang].keys())) if st.session_state.db_name_ref == "RSICD: Remote Sensing Images 11K": start[2].warning('If you are searching for Remote Sensing Images, \ try to use prompt "An aerial photograph of " \ to obtain best search experience!') if len(prompt) > 0: st.session_state.prompt = prompt.replace(' ', '_') start[4].markdown( '

Don\'t know what to search? Try Random!

\

🌟 We also support multi-language search. Type any language you know to search! ⌨️

', unsafe_allow_html=True) upld_model = start[6].file_uploader( "Or you can upload your previous run!", type='onnx') upld_btn = start[7].button( "Use Loaded Weights", disabled=upld_model is None) prompt = start[3].text_input( "Prompt:", value="An aerial photograph of "if st.session_state.db_name_ref == "RSICD: Remote Sensing Images 11K" else "", placeholder="Examples: playing corgi, 女人举着雨伞, mouette volant au-dessus de la mer, ガラスの花瓶の花 ...",) with start[5]: col = st.columns(8) has_no_prompt = (len(prompt) == 0 and upld_model is None) prompt_xq = col[6].button("Prompt", disabled=len(prompt) == 0) random_xq = col[7].button("Random", disabled=not ( len(prompt) == 0 and upld_model is None)) if random_xq: # Randomly pick a vector to query xq, orig_xq = init_random_query() st.session_state.xq = xq st.session_state.orig_xq = orig_xq _ = [elem.empty() for elem in start] elif prompt_xq or upld_btn: if upld_model is not None: # Import vector from a file import onnx from onnx import numpy_helper _model = onnx.load(upld_model) weights = _model.graph.initializer assert len(weights) == 1 xq = numpy_helper.to_array(weights[0]).tolist() assert len(xq) == DIMS st.session_state.prompt = upld_model.name.split(".onnx")[ 0].replace(' ', '_') else: print(f"Input prompt is {prompt}") # Tokenize the vectors p2v_func, args = text_model_map[st.session_state.lang][st.session_state.feat_name] xq = p2v_func(prompt, *args) st.session_state.xq = xq st.session_state.orig_xq = xq _ = [elem.empty() for elem in start] if 'xq' in st.session_state: # If it is not a fresh start if st.session_state.query_num+1 < len(messages): msg = messages[st.session_state.query_num+1] else: msg = messages[-1] # initialize classifier if 'clf' not in st.session_state: st.session_state.clf = Classifier(st.session_state.xq) # if we want to display images we end up here st.info(msg) # first retrieve images from pinecone st.session_state.matches, st.session_state.top_k = get_top_k( st.session_state.clf.get_weights(), top_k=9) # export the model into executable ONNX st.session_state.dnld_model = BytesIO() torch.onnx.export(torch.nn.Sequential(NormalizingLayer(), st.session_state.clf.model), torch.as_tensor(st.session_state.xq).reshape(1, -1), st.session_state.dnld_model, input_names=['input'], output_names=['output']) with st.container(): with st.sidebar: with st.container(): st.header("Top K Nearest in Database") for i, k in enumerate(st.session_state.top_k): url = k["url"] url += "?q=75&fm=jpg&w=200&fit=max" if k["id"] not in BAD_IDS: disabled = False else: disable = True dist = np.matmul(st.session_state.clf.get_weights() / np.linalg.norm(st.session_state.clf.get_weights()), np.array(k["vector"]).T) st.markdown(card_with_conf(i, dist, url), unsafe_allow_html=True) dnld_nam = st.text_input('Download Name:', f'{(st.session_state.prompt if "prompt" in st.session_state else "model")}.onnx', max_chars=50) dnld_btn = st.download_button('Download your classifier!', st.session_state.dnld_model, dnld_nam,) # once retrieved, display them alongside checkboxes in a form with st.form("batch", clear_on_submit=False): st.session_state.iters = st.slider( "Number of Iterations to Update", min_value=0, max_value=10, step=1, value=2) col = st.columns([1, 9]) col[0].form_submit_button("Train!", on_click=submit) col[1].form_submit_button( "Choose a new prompt", on_click=refresh_index) # we have three columns in the form cols = st.columns(3) for i, match in enumerate(st.session_state.matches): # find good url url = match["url"] url += "?q=75&fm=jpg&w=200&fit=max" if match["id"] not in BAD_IDS: disabled = False else: disable = True # the card shows an image and a checkbox cols[i % 3].markdown(card(i, url), unsafe_allow_html=True) # we access the values of the checkbox via st.session_state[f"input{i}"] cols[i % 3].slider( "Relevance", min_value=0.0, max_value=1.0, value=1.0, step=0.05, key=f"input{i}", disabled=disabled )