Spaces:
Sleeping
Sleeping
File size: 8,888 Bytes
01b1fb6 77138dd 01b1fb6 77138dd 01b1fb6 77138dd 01b1fb6 77138dd 01b1fb6 77138dd c37e755 04f4db5 81365b6 8a676f8 01b1fb6 81365b6 77138dd 01b1fb6 77138dd 01b1fb6 77138dd 01b1fb6 77138dd 01b1fb6 77138dd bb14fd9 3fdb999 bb14fd9 01b1fb6 77138dd 01b1fb6 77138dd 01b1fb6 77138dd 01b1fb6 77138dd 01b1fb6 bb14fd9 08f90c6 77138dd 01b1fb6 77138dd 01b1fb6 77138dd 01b1fb6 77138dd 01b1fb6 77138dd 01b1fb6 77138dd 01b1fb6 77138dd 01b1fb6 77138dd 01b1fb6 77138dd 01b1fb6 77138dd 01b1fb6 77138dd 01b1fb6 77138dd 01b1fb6 6190d9e 81365b6 6190d9e 0d14f21 22580dd 6190d9e 81365b6 6190d9e 81365b6 6190d9e 22580dd 77138dd d5b0d03 22580dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import os
import cv2
import time
import torch
import argparse
import gradio as gr
from PIL import Image
from numpy import random
from pathlib import Path
import torch.backends.cudnn as cudnn
from models.experimental import attempt_load
from utils.datasets import LoadStreams, LoadImages
from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
from utils.plots import plot_one_box
from utils.torch_utils import select_device, load_classifier, time_synchronized, TracedModel
os.system("wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt")
os.system("wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6.pt")
def detect_Custom(img,model):
if model =='YOLOv7':
model='best' # Naming Convention for yolov7 See output file of https://www.kaggle.com/code/owaiskhan9654/training-yolov7-on-kaggle-on-custom-dataset/data
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default="best.pt", help='./best.pt')
parser.add_argument('--source', type=str, default='Inference/', help='source')
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='display results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--update', action='store_true', help='update all models')
parser.add_argument('--project', default='runs/detect', help='save results to project/name')
parser.add_argument('--name', default='exp', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--trace', action='store_true', help='trace model')
opt = parser.parse_args()
img.save("Inference/test.jpg")
source, weights, view_img, save_txt, imgsz, trace = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size, opt.trace
save_img = True
webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
('rtsp://', 'rtmp://', 'http://', 'https://'))
save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)
set_logging()
device = select_device(opt.device)
half = device.type != 'cpu'
model = attempt_load(weights, map_location=device)
stride = int(model.stride.max())
imgsz = check_img_size(imgsz, s=stride)
if trace:
model = TracedModel(model, device, opt.img_size)
if half:
model.half()
classify = False
if classify:
modelc = load_classifier(name='resnet101', n=2)
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
vid_path, vid_writer = None, None
if webcam:
view_img = check_imshow()
cudnn.benchmark = True
dataset = LoadStreams(source, img_size=imgsz, stride=stride)
else:
dataset = LoadImages(source, img_size=imgsz, stride=stride)
names = model.module.names if hasattr(model, 'module') else model.names
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
if device.type != 'cpu':
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters())))
t0 = time.time()
for path, img, im0s, vid_cap in dataset:
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float()
img /= 255.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
t1 = time_synchronized()
pred = model(img, augment=opt.augment)[0]
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
t2 = time_synchronized()
if classify:
pred = apply_classifier(pred, modelc, img, im0s)
for i, det in enumerate(pred):
if webcam:
p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
else:
p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
p = Path(p)
save_path = str(save_dir / p.name)
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
s += '%gx%g ' % img.shape[2:]
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]
if len(det):
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum()
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "
for *xyxy, conf, cls in reversed(det):
if save_txt:
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()
line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh)
with open(txt_path + '.txt', 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
if save_img or view_img:
label = f'{names[int(cls)]} {conf:.2f}'
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)
if view_img:
cv2.imshow(str(p), im0)
cv2.waitKey(1)
if save_img:
if dataset.mode == 'image':
cv2.imwrite(save_path, im0)
else:
if vid_path != save_path:
vid_path = save_path
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release()
if vid_cap:
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else:
fps, w, h = 30, im0.shape[1], im0.shape[0]
save_path += '.mp4'
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
vid_writer.write(im0)
if save_txt or save_img:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
print(f'Done. ({time.time() - t0:.3f}s)')
return Image.fromarray(im0[:,:,::-1])
Custom_description="<center>Custom Training Performed on Google Colab <a href='https://drive.google.com/drive/folders/1Ez0ZFGaeV6yS7wfSHyY5T7SFRICKKdCj?usp=sharing' style='text-decoration: underline' target='_blank'>Link</a> </center><br> <center>Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors </center>"
Footer = (
"<center>Model Trained by: Student of Sipna College of Engineering and Technology, Amravati, Maharashtra. </center>"
"<center> Model Trained Google Kernel <a href=\"https://drive.google.com/file/d/1WSOTKwThX2CA_G0NOKOsTxsfMVJSeGH5/view?usp=sharing\">Link</a> <br></center>"
"<center> HuggingFace🤗 Model Deployed Repository <a href=\"https://huggingface.co/spaces/GauriDeshpande/AutoFis_Yolov7\">Link</a> <br></center>"
)
Top_Title="<center>Automated Identification of Fish Spieces using Yolov7 🚀</center>"
css = ".output-image, .input-image, .image-preview {height: 300px !important}"
gr.Interface(detect_Custom,[gr.Image(type="pil"),gr.Dropdown(default="YOLOv7",choices=["YOLOv7"])],gr.Image(type="pil"),css=css,title=Top_Title,description=Custom_description,article=Footer,cache_examples=False).launch() |