Spaces:
Sleeping
Sleeping
import os | |
import gradio as grad | |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, TextStreamer | |
auth_token = os.environ.get("auth_token") | |
model_c = 'nadsoft/faseeh.v.9' | |
tokenizer = AutoTokenizer.from_pretrained(model_c,src_lang='ar_AR', tgt_lang='en_XX',use_auth_token=auth_token) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_c,use_auth_token=auth_token) | |
streamer = TextStreamer(tokenizer) | |
def translate(text): | |
inputs = tokenizer(text, return_tensors="pt") | |
outputs = model.generate(**inputs, max_length=128, num_beams=1,streamer=streamer) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response | |
grad.Interface(translate, inputs=["text"], outputs=["text"]).launch() |