Update app.py
Browse files
app.py
CHANGED
@@ -1,74 +1,115 @@
|
|
1 |
|
|
|
2 |
import gradio as gr
|
3 |
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
|
|
4 |
import fitz # PyMuPDF for PDF handling
|
|
|
|
|
5 |
|
6 |
-
# Load
|
7 |
model_name = "dbmdz/bert-large-cased-finetuned-conll03-english"
|
8 |
-
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
-
ner_pipeline = pipeline("ner", model=
|
|
|
|
|
11 |
|
12 |
-
# Function to extract text from a PDF file
|
13 |
def extract_text_from_pdf(file_path):
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
return None
|
26 |
|
27 |
# Function to process the text and extract entities based on custom labels
|
28 |
def process_text(file, labels):
|
29 |
-
#
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
# Define the custom label mapping
|
33 |
label_map = {
|
34 |
"Name": ["PER"],
|
35 |
"Organization": ["ORG"],
|
36 |
"Location": ["LOC"],
|
|
|
37 |
"Project": ["MISC"],
|
38 |
"Education": ["MISC"],
|
39 |
}
|
40 |
-
|
41 |
-
# Split the custom labels provided by the user
|
42 |
-
requested_labels = [label.strip() for label in labels.split(",")]
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
# Initialize a dictionary to hold the extracted information
|
48 |
extracted_info = {label: [] for label in requested_labels}
|
49 |
-
|
|
|
|
|
|
|
50 |
# Process the NER results
|
51 |
for entity in ner_results:
|
52 |
-
# Remove subword tokens (##) and map the entity to the custom labels
|
53 |
entity_text = entity['word'].replace("##", "")
|
54 |
-
|
55 |
-
|
56 |
-
#
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
60 |
# Format the output
|
61 |
output = ""
|
62 |
for label, entities in extracted_info.items():
|
63 |
if entities:
|
64 |
-
|
|
|
|
|
65 |
else:
|
66 |
output += f"{label}: No information found.\n"
|
67 |
-
|
68 |
return output.strip()
|
69 |
|
70 |
# Create Gradio components
|
71 |
-
file_input = gr.File(label="Upload a PDF file")
|
72 |
label_input = gr.Textbox(label="Enter labels to extract (comma-separated)")
|
73 |
output_text = gr.Textbox(label="Extracted Information")
|
74 |
|
@@ -77,9 +118,9 @@ iface = gr.Interface(
|
|
77 |
fn=process_text,
|
78 |
inputs=[file_input, label_input],
|
79 |
outputs=output_text,
|
80 |
-
title="NER with Custom Labels from PDF",
|
81 |
-
description="Upload a PDF file and extract entities based on custom labels."
|
82 |
)
|
83 |
|
84 |
# Launch the Gradio interface
|
85 |
-
iface.launch()
|
|
|
1 |
|
2 |
+
|
3 |
import gradio as gr
|
4 |
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
5 |
+
from sentence_transformers import SentenceTransformer, util
|
6 |
import fitz # PyMuPDF for PDF handling
|
7 |
+
import torch
|
8 |
+
import docx # For DOCX handling
|
9 |
|
10 |
+
# Load pre-trained models
|
11 |
model_name = "dbmdz/bert-large-cased-finetuned-conll03-english"
|
12 |
+
ner_model = AutoModelForTokenClassification.from_pretrained(model_name)
|
13 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
14 |
+
ner_pipeline = pipeline("ner", model=ner_model, tokenizer=tokenizer, aggregation_strategy="simple")
|
15 |
+
|
16 |
+
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
17 |
|
18 |
+
# Function to extract text from a PDF file with error handling
|
19 |
def extract_text_from_pdf(file_path):
|
20 |
+
try:
|
21 |
+
doc = fitz.open(file_path)
|
22 |
+
text = ""
|
23 |
+
for page in doc:
|
24 |
+
text += page.get_text()
|
25 |
+
return text.strip()
|
26 |
+
except Exception as e:
|
27 |
+
return f"Error extracting text from PDF: {str(e)}"
|
28 |
+
|
29 |
+
# Function to extract text from a DOCX file
|
30 |
+
def extract_text_from_docx(file_path):
|
31 |
+
try:
|
32 |
+
doc = docx.Document(file_path)
|
33 |
+
text = "\n".join([para.text for para in doc.paragraphs])
|
34 |
+
return text.strip()
|
35 |
+
except Exception as e:
|
36 |
+
return f"Error extracting text from DOCX: {str(e)}"
|
37 |
+
|
38 |
+
# Function to calculate cosine similarity
|
39 |
+
def calculate_similarity(input_label, predefined_labels):
|
40 |
+
input_embedding = embedding_model.encode(input_label, convert_to_tensor=True)
|
41 |
+
predefined_embeddings = embedding_model.encode(predefined_labels, convert_to_tensor=True)
|
42 |
+
cosine_scores = util.pytorch_cos_sim(input_embedding, predefined_embeddings)
|
43 |
+
best_match_idx = torch.argmax(cosine_scores).item()
|
44 |
+
return predefined_labels[best_match_idx], cosine_scores[0][best_match_idx].item()
|
45 |
+
|
46 |
+
# Function to map recognized entities to custom labels with cosine similarity
|
47 |
+
def map_labels_with_similarity(input_label, label_map):
|
48 |
+
predefined_labels = list(label_map.keys())
|
49 |
+
best_match_label, similarity_score = calculate_similarity(input_label, predefined_labels)
|
50 |
+
if similarity_score > 0.7: # Threshold for considering a match
|
51 |
+
return best_match_label
|
52 |
return None
|
53 |
|
54 |
# Function to process the text and extract entities based on custom labels
|
55 |
def process_text(file, labels):
|
56 |
+
# Determine the file type and extract text accordingly
|
57 |
+
if file.name.endswith(".pdf"):
|
58 |
+
text = extract_text_from_pdf(file.name)
|
59 |
+
elif file.name.endswith(".docx"):
|
60 |
+
text = extract_text_from_docx(file.name)
|
61 |
+
else:
|
62 |
+
return "Unsupported file type. Please upload a PDF or DOCX file."
|
63 |
+
|
64 |
+
if text.startswith("Error"):
|
65 |
+
return text # Return the error message if text extraction failed
|
66 |
+
|
67 |
# Define the custom label mapping
|
68 |
label_map = {
|
69 |
"Name": ["PER"],
|
70 |
"Organization": ["ORG"],
|
71 |
"Location": ["LOC"],
|
72 |
+
"Address": ["LOC"], # Address mapped to Location
|
73 |
"Project": ["MISC"],
|
74 |
"Education": ["MISC"],
|
75 |
}
|
76 |
+
|
77 |
+
# Split the custom labels provided by the user and handle potential input issues
|
78 |
+
requested_labels = [label.strip().capitalize() for label in labels.split(",") if label.strip()]
|
79 |
+
if not requested_labels:
|
80 |
+
return "No valid labels provided. Please enter valid labels to extract."
|
81 |
+
|
|
|
82 |
# Initialize a dictionary to hold the extracted information
|
83 |
extracted_info = {label: [] for label in requested_labels}
|
84 |
+
|
85 |
+
# Perform NER on the extracted text
|
86 |
+
ner_results = ner_pipeline(text)
|
87 |
+
|
88 |
# Process the NER results
|
89 |
for entity in ner_results:
|
|
|
90 |
entity_text = entity['word'].replace("##", "")
|
91 |
+
entity_group = entity['entity_group']
|
92 |
+
|
93 |
+
# Determine the best matching label using cosine similarity
|
94 |
+
for input_label in requested_labels:
|
95 |
+
best_match_label = map_labels_with_similarity(input_label, label_map)
|
96 |
+
if best_match_label and entity_group in label_map[best_match_label]:
|
97 |
+
extracted_info[input_label].append(entity_text)
|
98 |
+
|
99 |
# Format the output
|
100 |
output = ""
|
101 |
for label, entities in extracted_info.items():
|
102 |
if entities:
|
103 |
+
# Remove duplicates and clean up the entities
|
104 |
+
unique_entities = sorted(set(entities))
|
105 |
+
output += f"{label}: {', '.join(unique_entities)}\n"
|
106 |
else:
|
107 |
output += f"{label}: No information found.\n"
|
108 |
+
|
109 |
return output.strip()
|
110 |
|
111 |
# Create Gradio components
|
112 |
+
file_input = gr.File(label="Upload a PDF or DOCX file")
|
113 |
label_input = gr.Textbox(label="Enter labels to extract (comma-separated)")
|
114 |
output_text = gr.Textbox(label="Extracted Information")
|
115 |
|
|
|
118 |
fn=process_text,
|
119 |
inputs=[file_input, label_input],
|
120 |
outputs=output_text,
|
121 |
+
title="NER with Custom Labels from PDF or DOCX",
|
122 |
+
description="Upload a PDF or DOCX file and extract entities based on custom labels."
|
123 |
)
|
124 |
|
125 |
# Launch the Gradio interface
|
126 |
+
iface.launch()
|