import gradio as gr import openai import requests import os from dotenv import load_dotenv import io import sys import json import PIL import time from stability_sdk import client import stability_sdk.interfaces.gooseai.generation.generation_pb2 as generation import markdown2 title="najimino AI recipe generator" inputs_label="どんな料理か教えてくれれば,新しいレシピを考えます" outputs_label="najimino AIが返信をします" visual_outputs_label="料理のイメージ" description=""" - ※入出力の文字数は最大1000文字程度までを目安に入力してください。回答に50秒くらいかかります. """ article = """ """ load_dotenv() openai.api_key = os.getenv('OPENAI_API_KEY') os.environ['STABILITY_HOST'] = 'grpc.stability.ai:443' stability_api = client.StabilityInference( key=os.getenv('STABILITY_KEY'), verbose=True, # engine="stable-diffusion-512-v2-1", # engine="stable-diffusion-xl-beta-v2-2-2", # engine="stable-diffusion-xl-1024-v0-9", engine="stable-diffusion-xl-1024-v1-0", # Available engines: stable-diffusion-v1 stable-diffusion-v1-5 stable-diffusion-512-v2-0 stable-diffusion-768-v2-0 # stable-diffusion-512-v2-1 stable-diffusion-768-v2-1 stable-diffusion-xl-beta-v2-2-2 stable-inpainting-v1-0 stable-inpainting-512-v2-0 ) MODEL = "gpt-4" # MODEL = "gpt-3.5-turbo-16k" # MODEL = "gpt-3.5-turbo-0613" def get_filetext(filename, cache={}): if filename in cache: # キャッシュに保存されている場合は、キャッシュからファイル内容を取得する return cache[filename] else: if not os.path.exists(filename): raise ValueError(f"ファイル '{filename}' が見つかりませんでした") with open(filename, "r") as f: text = f.read() # ファイル内容をキャッシュする cache[filename] = text return text def get_functions_from_schema(filename): schema = get_filetext(filename) schema_json = json.loads(schema) functions = schema_json.get("functions") return functions class StabilityAI: @classmethod def generate_image(cls, visualize_prompt): print("visualize_prompt:"+visualize_prompt) answers = stability_api.generate( prompt=visualize_prompt, ) for resp in answers: for artifact in resp.artifacts: if artifact.finish_reason == generation.FILTER: print("NSFW") if artifact.type == generation.ARTIFACT_IMAGE: img = PIL.Image.open(io.BytesIO(artifact.binary)) return img class OpenAI: @classmethod def chat_completion(cls, prompt, start_with=""): constraints = get_filetext(filename = "constraints.md") template = get_filetext(filename = "template.md") # ChatCompletion APIに渡すデータを定義する data = { "model": MODEL, "messages": [ {"role": "system", "content": constraints} ,{"role": "system", "content": template} ,{"role": "assistant", "content": "Sure!"} ,{"role": "user", "content": prompt} ,{"role": "assistant", "content": start_with} ], } # 文章生成にかかる時間を計測する start = time.time() # ChatCompletion APIを呼び出す response = requests.post( "https://api.openai.com/v1/chat/completions", headers={ "Content-Type": "application/json", "Authorization": f"Bearer {openai.api_key}" }, json=data ) print("gpt generation time: "+str(time.time() - start)) # ChatCompletion APIから返された結果を取得する result = response.json() print(result) content = result["choices"][0]["message"]["content"].strip() visualize_prompt = content.split("### Prompt for Visual Expression\n\n")[1] #print("split_content:"+split_content) #if len(split_content) > 1: # visualize_prompt = split_content[1] #else: # visualize_prompt = "vacant dish" #print("visualize_prompt:"+visualize_prompt) answers = stability_api.generate( prompt=visualize_prompt, ) @classmethod def chat_completion_with_function(cls, prompt, messages, functions): print("prompt:"+prompt) # 文章生成にかかる時間を計測する start = time.time() # ChatCompletion APIを呼び出す response = openai.ChatCompletion.create( model=MODEL, messages=messages, functions=functions, function_call={"name": "format_recipe"} ) print("gpt generation time: "+str(time.time() - start)) # ChatCompletion APIから返された結果を取得する message = response.choices[0].message print("chat completion message: " + json.dumps(message, indent=2)) return message class NajiminoAI: def __init__(self, user_message): self.user_message = user_message def generate_recipe_prompt(self): template = get_filetext(filename="template.md") prompt = f""" {self.user_message} --- 上記を元に、下記テンプレートを埋めてください。 --- {template} """ return prompt def format_recipe(self, lang, title, description, ingredients, instruction, comment_feelings_taste, explanation_to_blind_person, prompt_for_visual_expression): template = get_filetext(filename = "template.md") debug_message = template.format( lang=lang, title=title, description=description, ingredients=ingredients, instruction=instruction, comment_feelings_taste=comment_feelings_taste, explanation_to_blind_person=explanation_to_blind_person, prompt_for_visual_expression=prompt_for_visual_expression ) print("debug_message: "+debug_message) return debug_message @classmethod def generate(cls, user_message): najiminoai = NajiminoAI(user_message) return najiminoai.generate_recipe() def generate_recipe(self): user_message = self.user_message constraints = get_filetext(filename = "constraints.md") messages = [ {"role": "system", "content": constraints} ,{"role": "user", "content": user_message} ] functions = get_functions_from_schema('schema.json') message = OpenAI.chat_completion_with_function(prompt=user_message, messages=messages, functions=functions) image = None html = None if message.get("function_call"): function_name = message["function_call"]["name"] args = json.loads(message["function_call"]["arguments"]) lang=args.get("lang") title=args.get("title") description=args.get("description") ingredients=args.get("ingredients") instruction=args.get("instruction") comment_feelings_taste=args.get("comment_feelings_taste") explanation_to_blind_person=args.get("explanation_to_blind_person") prompt_for_visual_expression_in_en=args.get("prompt_for_visual_expression_in_en") prompt_for_visual_expression = \ prompt_for_visual_expression_in_en \ + " delicious looking extremely detailed photo f1.2 (50mm|85mm) award winner depth of field bokeh perfect lighting " print("prompt_for_visual_expression: "+prompt_for_visual_expression) # 画像生成にかかる時間を計測する start = time.time() image = StabilityAI.generate_image(prompt_for_visual_expression) print("image generation time: "+str(time.time() - start)) function_response = self.format_recipe( lang=lang, title=title, description=description, ingredients=ingredients, instruction=instruction, comment_feelings_taste=comment_feelings_taste, explanation_to_blind_person=explanation_to_blind_person, prompt_for_visual_expression=prompt_for_visual_expression ) html = ( "
" + "

" + markdown2.markdown(function_response) + "

" ) return [image, html] def main(): # インプット例をクリックした時のコールバック関数 def click_example(example): # クリックされたインプット例をテキストボックスに自動入力 inputs.value = example time.sleep(0.1) # テキストボックスに文字が表示されるまで待機 # 自動入力後に実行ボタンをクリックして結果を表示 execute_button.click() iface = gr.Interface(fn=NajiminoAI.generate, examples=[ ["ラー麺 スイカ かき氷 八ツ橋"], ["お好み焼き 鯖"], ["茹でたアスパラガスに合う季節のソース"], ], inputs=gr.Textbox(label=inputs_label), outputs=[ gr.Image(label="Visual Expression"), "html" ], title=title, description=description, article=article ) iface.launch() if __name__ == '__main__': function = '' if len(sys.argv) > 1: function = sys.argv[1] if function == 'generate': NajiminoAI.generate("グルテンフリーの香ばしいサバのお好み焼き") elif function == 'generate_image': image = StabilityAI.generate_image("Imagine a delicious gluten-free okonomiyaki with mackerel. The okonomiyaki is crispy on the outside and chewy on the inside. It is topped with savory sauce and creamy mayonnaise, creating a mouthwatering visual. The dish is garnished with finely chopped green onions and red pickled ginger, adding a pop of color. The mackerel fillets are beautifully grilled and placed on top of the okonomiyaki, adding a touch of elegance. The dish is served on a traditional Japanese plate, completing the visual presentation.") print("image: " + image) # imageが何のクラス確認する if type(image) == PIL.PngImagePlugin.PngImageFile: #save image image.save("image.png") else: main()