File size: 9,269 Bytes
0d37116
 
 
 
28c85d1
 
 
 
 
9b84090
28c85d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d37116
 
 
 
28c85d1
 
 
 
 
 
 
 
0d37116
 
28c85d1
 
0d37116
28c85d1
0d37116
 
 
 
 
28c85d1
0d37116
 
28c85d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d37116
28c85d1
 
0d37116
 
 
 
 
 
 
 
 
 
 
 
 
28c85d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d37116
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import os
import gradio as gr
from scipy.io.wavfile import write
import subprocess 
import argparse
from concurrent.futures import ProcessPoolExecutor
import time
import typing as tp
import warnings
from pathlib import Path
import torch
import gradio as gr

from audiocraft.data.audio_utils import convert_audio
from audiocraft.data.audio import audio_write
from audiocraft.models import MusicGen


MODEL = None  # Last used model
IS_BATCHED = "facebook/MusicGen" in os.environ.get('SPACE_ID', '')
MAX_BATCH_SIZE = 6
BATCHED_DURATION = 15
INTERRUPTING = False

def interrupt():
    global INTERRUPTING
    INTERRUPTING = True


class FileCleaner:
    def __init__(self, file_lifetime: float = 3600):
        self.file_lifetime = file_lifetime
        self.files = []

    def add(self, path: tp.Union[str, Path]):
        self._cleanup()
        self.files.append((time.time(), Path(path)))

    def _cleanup(self):
        now = time.time()
        for time_added, path in list(self.files):
            if now - time_added > self.file_lifetime:
                if path.exists():
                    path.unlink()
                self.files.pop(0)
            else:
                break


file_cleaner = FileCleaner()


def make_waveform(*args, **kwargs):
    be = time.time()
    with warnings.catch_warnings():
        warnings.simplefilter('ignore')
        out = gr.make_waveform(*args, **kwargs)
        print("Make a video took", time.time() - be)
        return out


def load_model(version='melody'):
    global MODEL
    print("Loading model", version)
    if MODEL is None or MODEL.name != version:
        MODEL = MusicGen.get_pretrained(version)


def _do_predictions(texts, melodies, duration, progress=False, **gen_kwargs):
    MODEL.set_generation_params(duration=duration, **gen_kwargs)
    print("new batch", len(texts), texts, [None if m is None else (m[0], m[1].shape) for m in melodies])
    be = time.time()
    processed_melodies = []
    target_sr = 32000
    target_ac = 1
    for melody in melodies:
        if melody is None:
            processed_melodies.append(None)
        else:
            sr, melody = melody[0], torch.from_numpy(melody[1]).to(MODEL.device).float().t()
            if melody.dim() == 1:
                melody = melody[None]
            melody = melody[..., :int(sr * duration)]
            melody = convert_audio(melody, sr, target_sr, target_ac)
            processed_melodies.append(melody)

    if any(m is not None for m in processed_melodies):
        outputs = MODEL.generate_with_chroma(
            descriptions=texts,
            melody_wavs=processed_melodies,
            melody_sample_rate=target_sr,
            progress=progress,
        )
    else:
        outputs = MODEL.generate(texts, progress=progress)

    outputs = outputs.detach().cpu().float()
    out_files = []
    for output in outputs:
        with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
            audio_write(
                file.name, output, MODEL.sample_rate, strategy="loudness",
                loudness_headroom_db=16, loudness_compressor=True, add_suffix=False)
            out_files.append(pool.submit(make_waveform, file.name))
            file_cleaner.add(file.name)
    res = [out_file.result() for out_file in out_files]
    for file in res:
        file_cleaner.add(file)
    print("batch finished", len(texts), time.time() - be)
    print("Tempfiles currently stored: ", len(file_cleaner.files))
    return res


def predict_batched(texts, melodies):
    max_text_length = 512
    texts = [text[:max_text_length] for text in texts]
    load_model('melody')
    res = _do_predictions(texts, melodies, BATCHED_DURATION)
    return [res]


def predict_full(model, text, melody, duration, topk, topp, temperature, cfg_coef, progress=gr.Progress()):
    global INTERRUPTING
    INTERRUPTING = False
    if temperature < 0:
        raise gr.Error("Temperature must be >= 0.")
    if topk < 0:
        raise gr.Error("Topk must be non-negative.")
    if topp < 0:
        raise gr.Error("Topp must be non-negative.")

    topk = int(topk)
    load_model(model)

    def _progress(generated, to_generate):
        progress((generated, to_generate))
        if INTERRUPTING:
            raise gr.Error("Interrupted.")
    MODEL.set_custom_progress_callback(_progress)

    outs = _do_predictions(
        [text], [melody], duration, progress=True,
        top_k=topk, top_p=topp, temperature=temperature, cfg_coef=cfg_coef)
    return outs[0]


def toggle_audio_src(choice):
    if choice == "mic":
        return gr.update(source="microphone", value=None, label="Microphone")
    else:
        return gr.update(source="upload", value=None, label="File")


def ui_full(launch_kwargs):
    with gr.Blocks() as interface:
        gr.Markdown(
            """
            # MusicGen and Demucs Combination
            This is a combined demo of MusicGen and Demucs.
            MusicGen is a model for music generation based on text prompts,
            and Demucs is a model for music source separation.
            """
        )
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    text = gr.Text(label="Input Text", interactive=True)
                    with gr.Column():
                        radio = gr.Radio(["file", "mic"], value="file",
                                         label="Condition on a Melody (optional) File or Mic")
                        melody = gr.Audio(source="upload", type="numpy", label="Melody File",
                                          interactive=True, elem_id="melody-input")
                with gr.Row():
                    submit = gr.Button("Generate Music")
                with gr.Row():
                    audio_output = gr.Audio(type="numpy", label="Generated Music")
                    vocals_output = gr.Audio(type="filepath", label="Vocals")
                    bass_output = gr.Audio(type="filepath", label="Bass")
                    drums_output = gr.Audio(type="filepath", label="Drums")
                    other_output = gr.Audio(type="filepath", label="Other")
        submit.click(predict_full,
                     inputs=[text, melody, 10, 250, 0, 1.0, 3.0],
                     outputs=[audio_output, vocals_output, bass_output, drums_output, other_output])
        radio.change(toggle_audio_src, radio, [melody], queue=False, show_progress=False)
        gr.Examples(
            fn=predict_full,
            examples=[
                [
                    "An 80s driving pop song with heavy drums and synth pads in the background",
                    "./assets/bach.mp3",
                ],
                [
                    "A cheerful country song with acoustic guitars",
                    "./assets/bolero_ravel.mp3",
                ],
                [
                    "90s rock song with electric guitar and heavy drums",
                    None,
                ],
                [
                    "a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions",
                    "./assets/bach.mp3",
                ],
                [
                    "lofi slow bpm electro chill with organic samples",
                    None,
                ],
            ],
            inputs=[text, melody],
            outputs=[audio_output, vocals_output, bass_output, drums_output, other_output]
        )

    gr.Interface(
        fn=inference,
        inputs=gr.inputs.Audio(type="numpy", label="Input Audio"),
        outputs=[
            gr.outputs.Audio(type="filepath", label="Vocals"),
            gr.outputs.Audio(type="filepath", label="Bass"),
            gr.outputs.Audio(type="filepath", label="Drums"),
            gr.outputs.Audio(type="filepath", label="Other"),
        ],
        title="MusicGen and Demucs Combination",
        description="A combined demo of MusicGen and Demucs",
        article="",
    ).launch(enable_queue=True)

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--listen',
        type=str,
        default='0.0.0.0' if 'SPACE_ID' in os.environ else '127.0.0.1',
        help='IP to listen on for connections to Gradio',
    )
    parser.add_argument(
        '--username', type=str, default='', help='Username for authentication'
    )
    parser.add_argument(
        '--password', type=str, default='', help='Password for authentication'
    )
    parser.add_argument(
        '--server_port',
        type=int,
        default=0,
        help='Port to run the server listener on',
    )
    parser.add_argument(
        '--inbrowser', action='store_true', help='Open in browser'
    )
    parser.add_argument(
        '--share', action='store_true', help='Share the gradio UI'
    )

    args = parser.parse_args()

    launch_kwargs = {}
    launch_kwargs['server_name'] = args.listen

    if args.username and args.password:
        launch_kwargs['auth'] = (args.username, args.password)
    if args.server_port:
        launch_kwargs['server_port'] = args.server_port
    if args.inbrowser:
        launch_kwargs['inbrowser'] = args.inbrowser
    if args.share:
        launch_kwargs['share'] = args.share

    ui_full(launch_kwargs)