import argparse from concurrent.futures import ProcessPoolExecutor import os from pathlib import Path import subprocess as sp from tempfile import NamedTemporaryFile import time import typing as tp import warnings from concurrent.futures import Future import torch import gradio as gr import pydub from audiocraft.data.audio_utils import convert_audio from audiocraft.data.audio import audio_write from audiocraft.models import MusicGen MODEL = None # Last used model IS_BATCHED = "facebook/MusicGen" in os.environ.get('SPACE_ID', '') MAX_BATCH_SIZE = 6 BATCHED_DURATION = 15 INTERRUPTING = False # We have to wrap subprocess call to clean a bit the log when using gr.make_waveform _old_call = sp.call def _call_nostderr(*args, **kwargs): # Avoid ffmpeg vomitting on the logs. kwargs['stderr'] = sp.DEVNULL kwargs['stdout'] = sp.DEVNULL _old_call(*args, **kwargs) sp.call = _call_nostderr # Preallocating the pool of processes. pool = ProcessPoolExecutor(3) pool.__enter__() def interrupt(): global INTERRUPTING INTERRUPTING = True class FileCleaner: def __init__(self, file_lifetime: float = 3600): self.file_lifetime = file_lifetime self.files = [] def add(self, path: tp.Union[str, Path]): self._cleanup() self.files.append((time.time(), Path(path))) def _cleanup(self): now = time.time() for time_added, path in list(self.files): if now - time_added > self.file_lifetime: if path.exists(): path.unlink() self.files.pop(0) else: break file_cleaner = FileCleaner() def make_waveform(*args, **kwargs): # Further remove some warnings. be = time.time() with warnings.catch_warnings(): warnings.simplefilter('ignore') out = gr.make_waveform(*args, **kwargs) print("Make a video took", time.time() - be) return out def load_model(version='melody'): global MODEL print("Loading model", version) if MODEL is None or MODEL.name != version: MODEL = MusicGen.get_pretrained(version) def _do_predictions(texts, melodies, duration, progress=False, **gen_kwargs): MODEL.set_generation_params(duration=duration, **gen_kwargs) print("new batch", len(texts), texts, [None if m is None else (m[0], m[1].shape) for m in melodies]) be = time.time() processed_melodies = [] target_sr = 32000 target_ac = 1 for melody in melodies: if melody is None: processed_melodies.append(None) else: sr, melody = melody[0], torch.from_numpy(melody[1]).to(MODEL.device).float().t() if melody.dim() == 1: melody = melody[None] melody = melody[..., :int(sr * duration)] melody = convert_audio(melody, sr, target_sr, target_ac) processed_melodies.append(melody) if any(m is not None for m in processed_melodies): outputs = MODEL.generate_with_chroma( descriptions=texts, melody_wavs=processed_melodies, melody_sample_rate=target_sr, progress=progress, ) else: outputs = MODEL.generate(texts, progress=progress) outputs = outputs.detach().cpu().float() out_files = [] for output in outputs: with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file: audio_write( file.name, output, MODEL.sample_rate, strategy="loudness", loudness_headroom_db=16, loudness_compressor=True, add_suffix=False) out_files.append(file.name) # Store the filename as a string file_cleaner.add(file.name) res = [out_file for out_file in out_files] for file in res: if isinstance(file, Future): # Check if it's a Future object file = file.result() # Extract the filename from the Future object file_cleaner.add(file) print("batch finished", len(texts), time.time() - be) print("Tempfiles currently stored: ", len(file_cleaner.files)) return res def predict_batched(texts, melodies): max_text_length = 512 texts = [text[:max_text_length] for text in texts] load_model('melody') res = _do_predictions(texts, melodies, BATCHED_DURATION) return [res] def predict_full(model, text, melody, duration, topk, topp, temperature, cfg_coef, progress=gr.Progress()): global INTERRUPTING INTERRUPTING = False if temperature < 0: raise gr.Error("Temperature must be >= 0.") if topk < 0: raise gr.Error("Topk must be non-negative.") if topp < 0: raise gr.Error("Topp must be non-negative.") topk = int(topk) load_model(model) def _progress(generated, to_generate): progress((generated, to_generate)) if INTERRUPTING: raise gr.Error("Interrupted.") MODEL.set_custom_progress_callback(_progress) outs = _do_predictions( [text], [melody], duration, progress=True, top_k=topk, top_p=topp, temperature=temperature, cfg_coef=cfg_coef) return inference(outs[0]) def inference(audio): os.makedirs("out", exist_ok=True) write('test.wav', audio[0], audio[1]) command = "python3 -m demucs.separate -n mdx_extra_q -d cpu test.wav -o out" process = sp.run(command, shell=True, stdout=sp.PIPE, stderr=sp.PIPE) print("Demucs script output:", process.stdout.decode()) os.makedirs("out", exist_ok=True) write('test.wav', audio[0], audio[1]) result = os.system("python3 -m demucs.separate -n mdx_extra_q -d cpu test.wav -o out") print(f"Demucs script result: {result}") # Check if files exist before returning files = ["./out/mdx_extra_q/test/vocals.wav", "./out/mdx_extra_q/test/bass.wav", "./out/mdx_extra_q/test/drums.wav", "./out/mdx_extra_q/test/other.wav"] for file in files: if not os.path.isfile(file): print(f"File not found: {file}") else: print(f"File exists: {file}") return files def toggle_audio_src(choice): if choice == "mic": return gr.update(source="microphone", value=None, label="Microphone") else: return gr.update(source="upload", value=None, label="File") def ui_full(launch_kwargs): with gr.Blocks() as interface: gr.Markdown( """ # MusicGen This is your private demo for [MusicGen](https://github.com/facebookresearch/audiocraft), a simple and controllable model for music generation presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284) """ ) with gr.Row(): with gr.Column(): with gr.Row(): text = gr.Text(label="Input Text", interactive=True) with gr.Column(): radio = gr.Radio(["file", "mic"], value="file", label="Condition on a melody (optional) File or Mic") melody = gr.Audio(source="upload", type="numpy", label="File", interactive=True, elem_id="melody-input") with gr.Row(): submit = gr.Button("Submit") # Adapted from https://github.com/rkfg/audiocraft/blob/long/app.py, MIT license. with gr.Row(): model = gr.Radio(["melody", "medium", "small", "large"], label="Model", value="melody", interactive=True) with gr.Row(): duration = gr.Slider(minimum=1, maximum=120, value=10, label="Duration", interactive=True) with gr.Row(): topk = gr.Number(label="Top-k", value=250, interactive=True) topp = gr.Number(label="Top-p", value=0, interactive=True) temperature = gr.Number(label="Temperature", value=1.0, interactive=True) cfg_coef = gr.Number(label="Classifier Free Guidance", value=3.0, interactive=True) with gr.Column(): output = [ gr.Audio(audio_file1, label="Generated Music 1"), gr.Audio(audio_file2, label="Generated Music 2"), gr.Audio(audio_file3, label="Generated Music 3"), gr.Audio(audio_file4, label="Generated Music 4") ] submit.click(predict_full, inputs=[model, text, melody, duration, topk, topp, temperature, cfg_coef], outputs=[output]) radio.change(toggle_audio_src, radio, [melody], queue=False, show_progress=False) gr.Examples( fn=predict_full, examples=[ [ "An 80s driving pop song with heavy drums and synth pads in the background", "./assets/bach.mp3", "melody" ], [ "A cheerful country song with acoustic guitars", "./assets/bolero_ravel.mp3", "melody" ], [ "90s rock song with electric guitar and heavy drums", None, "medium" ], [ "a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions", "./assets/bach.mp3", "melody" ], [ "lofi slow bpm electro chill with organic samples", None, "medium", ], ], inputs=[text, melody, model], outputs=[output] ) gr.Markdown( """ ### More details The model will generate a short music extract based on the description you provided. The model can generate up to 30 seconds of audio in one pass. It is now possible to extend the generation by feeding back the end of the previous chunk of audio. This can take a long time, and the model might lose consistency. The model might also decide at arbitrary positions that the song ends. **WARNING:** Choosing long durations will take a long time to generate (2min might take ~10min). An overlap of 12 seconds is kept with the previously generated chunk, and 18 "new" seconds are generated each time. We present 4 model variations: 1. Melody -- a music generation model capable of generating music condition on text and melody inputs. **Note**, you can also use text only. 2. Small -- a 300M transformer decoder conditioned on text only. 3. Medium -- a 1.5B transformer decoder conditioned on text only. 4. Large -- a 3.3B transformer decoder conditioned on text only (might OOM for the longest sequences.) When using `melody`, ou can optionaly provide a reference audio from which a broad melody will be extracted. The model will then try to follow both the description and melody provided. You can also use your own GPU or a Google Colab by following the instructions on our repo. See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft) for more details. """ ) interface.queue().launch(**launch_kwargs) def ui_batched(launch_kwargs): with gr.Blocks() as demo: gr.Markdown( """ # MusicGen This is the demo for [MusicGen](https://github.com/facebookresearch/audiocraft), a simple and controllable model for music generation presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284).
Duplicate Space for longer sequences, more control and no queue.

""" ) with gr.Row(): with gr.Column(): with gr.Row(): text = gr.Text(label="Describe your music", lines=2, interactive=True) with gr.Column(): radio = gr.Radio(["file", "mic"], value="file", label="Condition on a melody (optional) File or Mic") melody = gr.Audio(source="upload", type="numpy", label="File", interactive=True, elem_id="melody-input") with gr.Row(): submit = gr.Button("Generate") with gr.Column(): output = gr.Audio(label="Generated Music") submit.click(predict_batched, inputs=[text, melody], outputs=[output], batch=True, max_batch_size=MAX_BATCH_SIZE) radio.change(toggle_audio_src, radio, [melody], queue=False, show_progress=False) gr.Examples( fn=predict_batched, examples=[ [ "An 80s driving pop song with heavy drums and synth pads in the background", "./assets/bach.mp3", ], [ "A cheerful country song with acoustic guitars", "./assets/bolero_ravel.mp3", ], [ "90s rock song with electric guitar and heavy drums", None, ], [ "a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions bpm: 130", "./assets/bach.mp3", ], [ "lofi slow bpm electro chill with organic samples", None, ], ], inputs=[text, melody], outputs=[output] ) gr.Markdown(""" ### More details The model will generate 12 seconds of audio based on the description you provided. You can optionaly provide a reference audio from which a broad melody will be extracted. The model will then try to follow both the description and melody provided. All samples are generated with the `melody` model. You can also use your own GPU or a Google Colab by following the instructions on our repo. See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft) for more details. """) demo.queue(max_size=8 * 4).launch(**launch_kwargs) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( '--listen', type=str, default='0.0.0.0' if 'SPACE_ID' in os.environ else '127.0.0.1', help='IP to listen on for connections to Gradio', ) parser.add_argument( '--username', type=str, default='', help='Username for authentication' ) parser.add_argument( '--password', type=str, default='', help='Password for authentication' ) parser.add_argument( '--server_port', type=int, default=0, help='Port to run the server listener on', ) parser.add_argument( '--inbrowser', action='store_true', help='Open in browser' ) parser.add_argument( '--share', action='store_true', help='Share the gradio UI' ) args = parser.parse_args() launch_kwargs = {} launch_kwargs['server_name'] = args.listen if args.username and args.password: launch_kwargs['auth'] = (args.username, args.password) if args.server_port: launch_kwargs['server_port'] = args.server_port if args.inbrowser: launch_kwargs['inbrowser'] = args.inbrowser if args.share: launch_kwargs['share'] = args.share # Show the interface if IS_BATCHED: ui_batched(launch_kwargs) else: ui_full(launch_kwargs)