File size: 24,800 Bytes
d430de8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43c5871
 
d430de8
675a486
43c5871
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d430de8
 
 
 
 
 
 
 
 
 
 
 
 
 
02e714f
d430de8
 
 
 
 
 
 
fd89235
d430de8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3628e2
d430de8
 
 
 
43c5871
 
 
 
 
 
 
fd89235
d430de8
43c5871
d430de8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43c5871
 
 
 
 
 
fd89235
43c5871
d430de8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
from cached_path import cached_path


import torch
torch.manual_seed(0)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True

import random
random.seed(0)

import numpy as np
np.random.seed(0)

import nltk
nltk.download('punkt')

# load packages
import time
import random
import yaml
from munch import Munch
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import torchaudio
import librosa
from nltk.tokenize import word_tokenize

from models import *
from utils import *
from text_utils import TextCleaner
textclenaer = TextCleaner()


device = 'cuda' if torch.cuda.is_available() else 'cpu'

to_mel = torchaudio.transforms.MelSpectrogram(
    n_mels=80, n_fft=2048, win_length=1200, hop_length=300)
mean, std = -4, 4

def length_to_mask(lengths):
    mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
    mask = torch.gt(mask+1, lengths.unsqueeze(1))
    return mask

def preprocess(wave):
    wave_tensor = torch.from_numpy(wave).float()
    mel_tensor = to_mel(wave_tensor)
    mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std
    return mel_tensor

def compute_style(ref_dicts):
    reference_embeddings = {}
    for key, path in ref_dicts.items():
        wave, sr = librosa.load(path, sr=24000)
        audio, index = librosa.effects.trim(wave, top_db=30)
        if sr != 24000:
            audio = librosa.resample(audio, sr, 24000)
        mel_tensor = preprocess(audio).to(device)

        with torch.no_grad():
            ref = model.style_encoder(mel_tensor.unsqueeze(1))
        reference_embeddings[key] = (ref.squeeze(1), audio)

    return reference_embeddings

# load phonemizer
# import phonemizer
# global_phonemizer = phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True, words_mismatch='ignore')

# phonemizer = Phonemizer.from_checkpoint(str(cached_path('https://public-asai-dl-models.s3.eu-central-1.amazonaws.com/DeepPhonemizer/en_us_cmudict_ipa_forward.pt')))
import fugashi
import pykakasi
from collections import OrderedDict


# MB-iSTFT-VITS2

import re
from unidecode import unidecode
import pyopenjtalk


# Regular expression matching Japanese without punctuation marks:
_japanese_characters = re.compile(
    r'[A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]')

# Regular expression matching non-Japanese characters or punctuation marks:
_japanese_marks = re.compile(
    r'[^A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]')

# List of (symbol, Japanese) pairs for marks:
_symbols_to_japanese = [(re.compile('%s' % x[0]), x[1]) for x in [
    ('%', 'パーセント')
]]

# List of (romaji, ipa) pairs for marks:
_romaji_to_ipa = [(re.compile('%s' % x[0]), x[1]) for x in [
    ('ts', 'ʦ'),
    ('u', 'ɯ'),
    ('j', 'ʥ'),
    ('y', 'j'),
    ('ni', 'n^i'),
    ('nj', 'n^'),
    ('hi', 'çi'),
    ('hj', 'ç'),
    ('f', 'ɸ'),
    ('I', 'i*'),
    ('U', 'ɯ*'),
    ('r', 'ɾ')
]]

# List of (romaji, ipa2) pairs for marks:
_romaji_to_ipa2 = [(re.compile('%s' % x[0]), x[1]) for x in [
    ('u', 'ɯ'),
    ('ʧ', 'tʃ'),
    ('j', 'dʑ'),
    ('y', 'j'),
    ('ni', 'n^i'),
    ('nj', 'n^'),
    ('hi', 'çi'),
    ('hj', 'ç'),
    ('f', 'ɸ'),
    ('I', 'i*'),
    ('U', 'ɯ*'),
    ('r', 'ɾ')
]]

# List of (consonant, sokuon) pairs:
_real_sokuon = [(re.compile('%s' % x[0]), x[1]) for x in [
    (r'Q([↑↓]*[kg])', r'k#\1'),
    (r'Q([↑↓]*[tdjʧ])', r't#\1'),
    (r'Q([↑↓]*[sʃ])', r's\1'),
    (r'Q([↑↓]*[pb])', r'p#\1')
]]

# List of (consonant, hatsuon) pairs:
_real_hatsuon = [(re.compile('%s' % x[0]), x[1]) for x in [
    (r'N([↑↓]*[pbm])', r'm\1'),
    (r'N([↑↓]*[ʧʥj])', r'n^\1'),
    (r'N([↑↓]*[tdn])', r'n\1'),
    (r'N([↑↓]*[kg])', r'ŋ\1')
]]


def symbols_to_japanese(text):
    for regex, replacement in _symbols_to_japanese:
        text = re.sub(regex, replacement, text)
    return text


def japanese_to_romaji_with_accent(text):
    '''Reference https://r9y9.github.io/ttslearn/latest/notebooks/ch10_Recipe-Tacotron.html'''
    text = symbols_to_japanese(text)
    sentences = re.split(_japanese_marks, text)
    marks = re.findall(_japanese_marks, text)
    text = ''
    for i, sentence in enumerate(sentences):
        if re.match(_japanese_characters, sentence):
            if text != '':
                text += ' '
            labels = pyopenjtalk.extract_fullcontext(sentence)
            for n, label in enumerate(labels):
                phoneme = re.search(r'\-([^\+]*)\+', label).group(1)
                if phoneme not in ['sil', 'pau']:
                    text += phoneme.replace('ch', 'ʧ').replace('sh',
                                                               'ʃ').replace('cl', 'Q')
                else:
                    continue
                # n_moras = int(re.search(r'/F:(\d+)_', label).group(1))
                a1 = int(re.search(r"/A:(\-?[0-9]+)\+", label).group(1))
                a2 = int(re.search(r"\+(\d+)\+", label).group(1))
                a3 = int(re.search(r"\+(\d+)/", label).group(1))
                if re.search(r'\-([^\+]*)\+', labels[n + 1]).group(1) in ['sil', 'pau']:
                    a2_next = -1
                else:
                    a2_next = int(
                        re.search(r"\+(\d+)\+", labels[n + 1]).group(1))
                # Accent phrase boundary
                if a3 == 1 and a2_next == 1:
                    text += ' '
                # Falling
                elif a1 == 0 and a2_next == a2 + 1:
                    text += '↓'
                # Rising
                elif a2 == 1 and a2_next == 2:
                    text += '↑'
        if i < len(marks):
            text += unidecode(marks[i]).replace(' ', '')
    return text


def get_real_sokuon(text):
    for regex, replacement in _real_sokuon:
        text = re.sub(regex, replacement, text)
    return text


def get_real_hatsuon(text):
    for regex, replacement in _real_hatsuon:
        text = re.sub(regex, replacement, text)
    return text


def japanese_to_ipa(text):
    text = japanese_to_romaji_with_accent(text).replace('...', '…')
    text = re.sub(
        r'([aiueo])\1+', lambda x: x.group(0)[0]+'ː'*(len(x.group(0))-1), text)
    text = get_real_sokuon(text)
    text = get_real_hatsuon(text)
    for regex, replacement in _romaji_to_ipa:
        text = re.sub(regex, replacement, text)
    return text


def japanese_to_ipa2(text):
    text = japanese_to_romaji_with_accent(text).replace('...', '…')
    text = get_real_sokuon(text)
    text = get_real_hatsuon(text)
    for regex, replacement in _romaji_to_ipa2:
        text = re.sub(regex, replacement, text)
    return text


def japanese_to_ipa3(text):
    text = japanese_to_ipa2(text).replace('n^', 'ȵ').replace(
        'ʃ', 'ɕ').replace('*', '\u0325').replace('#', '\u031a')
    text = re.sub(
        r'([aiɯeo])\1+', lambda x: x.group(0)[0]+'ː'*(len(x.group(0))-1), text)
    text = re.sub(r'((?:^|\s)(?:ts|tɕ|[kpt]))', r'\1ʰ', text)
    return text


""" from https://github.com/keithito/tacotron """

'''
Cleaners are transformations that run over the input text at both training and eval time.

Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners"
hyperparameter. Some cleaners are English-specific. You'll typically want to use:
  1. "english_cleaners" for English text
  2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using
     the Unidecode library (https://pypi.python.org/pypi/Unidecode)
  3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update
     the symbols in symbols.py to match your data).
'''


# Regular expression matching whitespace:


import re
import inflect
from unidecode import unidecode

_inflect = inflect.engine()
_comma_number_re = re.compile(r'([0-9][0-9\,]+[0-9])')
_decimal_number_re = re.compile(r'([0-9]+\.[0-9]+)')
_pounds_re = re.compile(r'£([0-9\,]*[0-9]+)')
_dollars_re = re.compile(r'\$([0-9\.\,]*[0-9]+)')
_ordinal_re = re.compile(r'[0-9]+(st|nd|rd|th)')
_number_re = re.compile(r'[0-9]+')

# List of (regular expression, replacement) pairs for abbreviations:
_abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [
    ('mrs', 'misess'),
    ('mr', 'mister'),
    ('dr', 'doctor'),
    ('st', 'saint'),
    ('co', 'company'),
    ('jr', 'junior'),
    ('maj', 'major'),
    ('gen', 'general'),
    ('drs', 'doctors'),
    ('rev', 'reverend'),
    ('lt', 'lieutenant'),
    ('hon', 'honorable'),
    ('sgt', 'sergeant'),
    ('capt', 'captain'),
    ('esq', 'esquire'),
    ('ltd', 'limited'),
    ('col', 'colonel'),
    ('ft', 'fort'),
]]


# List of (ipa, lazy ipa) pairs:
_lazy_ipa = [(re.compile('%s' % x[0]), x[1]) for x in [
    ('r', 'ɹ'),
    ('æ', 'e'),
    ('ɑ', 'a'),
    ('ɔ', 'o'),
    ('ð', 'z'),
    ('θ', 's'),
    ('ɛ', 'e'),
    ('ɪ', 'i'),
    ('ʊ', 'u'),
    ('ʒ', 'ʥ'),
    ('ʤ', 'ʥ'),
    ('', '↓'),
]]

# List of (ipa, lazy ipa2) pairs:
_lazy_ipa2 = [(re.compile('%s' % x[0]), x[1]) for x in [
    ('r', 'ɹ'),
    ('ð', 'z'),
    ('θ', 's'),
    ('ʒ', 'ʑ'),
    ('ʤ', 'dʑ'),
    ('', '↓'),
]]

# List of (ipa, ipa2) pairs
_ipa_to_ipa2 = [(re.compile('%s' % x[0]), x[1]) for x in [
    ('r', 'ɹ'),
    ('ʤ', 'dʒ'),
    ('ʧ', 'tʃ')
]]


def expand_abbreviations(text):
    for regex, replacement in _abbreviations:
        text = re.sub(regex, replacement, text)
    return text


def collapse_whitespace(text):
    return re.sub(r'\s+', ' ', text)


def _remove_commas(m):
    return m.group(1).replace(',', '')


def _expand_decimal_point(m):
    return m.group(1).replace('.', ' point ')


def _expand_dollars(m):
    match = m.group(1)
    parts = match.split('.')
    if len(parts) > 2:
        return match + ' dollars'  # Unexpected format
    dollars = int(parts[0]) if parts[0] else 0
    cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0
    if dollars and cents:
        dollar_unit = 'dollar' if dollars == 1 else 'dollars'
        cent_unit = 'cent' if cents == 1 else 'cents'
        return '%s %s, %s %s' % (dollars, dollar_unit, cents, cent_unit)
    elif dollars:
        dollar_unit = 'dollar' if dollars == 1 else 'dollars'
        return '%s %s' % (dollars, dollar_unit)
    elif cents:
        cent_unit = 'cent' if cents == 1 else 'cents'
        return '%s %s' % (cents, cent_unit)
    else:
        return 'zero dollars'


def _expand_ordinal(m):
    return _inflect.number_to_words(m.group(0))


def _expand_number(m):
    num = int(m.group(0))
    if num > 1000 and num < 3000:
        if num == 2000:
            return 'two thousand'
        elif num > 2000 and num < 2010:
            return 'two thousand ' + _inflect.number_to_words(num % 100)
        elif num % 100 == 0:
            return _inflect.number_to_words(num // 100) + ' hundred'
        else:
            return _inflect.number_to_words(num, andword='', zero='oh', group=2).replace(', ', ' ')
    else:
        return _inflect.number_to_words(num, andword='')


def normalize_numbers(text):
    text = re.sub(_comma_number_re, _remove_commas, text)
    text = re.sub(_pounds_re, r'\1 pounds', text)
    text = re.sub(_dollars_re, _expand_dollars, text)
    text = re.sub(_decimal_number_re, _expand_decimal_point, text)
    text = re.sub(_ordinal_re, _expand_ordinal, text)
    text = re.sub(_number_re, _expand_number, text)
    return text


def mark_dark_l(text):
    return re.sub(r'l([^aeiouæɑɔəɛɪʊ ]*(?: |$))', lambda x: 'ɫ'+x.group(1), text)


import re
#from text.thai import num_to_thai, latin_to_thai
#from text.shanghainese import shanghainese_to_ipa
#from text.cantonese import cantonese_to_ipa
#from text.ngu_dialect import ngu_dialect_to_ipa
from unidecode import unidecode


_whitespace_re = re.compile(r'\s+')

# Regular expression matching Japanese without punctuation marks:
_japanese_characters = re.compile(r'[A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]')

# Regular expression matching non-Japanese characters or punctuation marks:
_japanese_marks = re.compile(r'[^A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]')

# List of (regular expression, replacement) pairs for abbreviations:
_abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [
  ('mrs', 'misess'),
  ('mr', 'mister'),
  ('dr', 'doctor'),
  ('st', 'saint'),
  ('co', 'company'),
  ('jr', 'junior'),
  ('maj', 'major'),
  ('gen', 'general'),
  ('drs', 'doctors'),
  ('rev', 'reverend'),
  ('lt', 'lieutenant'),
  ('hon', 'honorable'),
  ('sgt', 'sergeant'),
  ('capt', 'captain'),
  ('esq', 'esquire'),
  ('ltd', 'limited'),
  ('col', 'colonel'),
  ('ft', 'fort'),
]]


def expand_abbreviations(text):
  for regex, replacement in _abbreviations:
    text = re.sub(regex, replacement, text)
  return text

def collapse_whitespace(text):
    return re.sub(_whitespace_re, ' ', text)


def convert_to_ascii(text):
    return unidecode(text)


def basic_cleaners(text):
    # - For replication of https://github.com/FENRlR/MB-iSTFT-VITS2/issues/2
    # you may need to replace the symbol to Russian one
    '''Basic pipeline that lowercases and collapses whitespace without transliteration.'''
    text = text.lower()
    text = collapse_whitespace(text)
    return text

'''
def fix_g2pk2_error(text):
    new_text = ""
    i = 0
    while i < len(text) - 4:
        if (text[i:i+3] == 'ㅇㅡㄹ' or text[i:i+3] == 'ㄹㅡㄹ') and text[i+3] == ' ' and text[i+4] == 'ㄹ':
            new_text += text[i:i+3] + ' ' + 'ㄴ'
            i += 5
        else:
            new_text += text[i]
            i += 1

    new_text += text[i:]
    return new_text
'''



def japanese_cleaners(text):
    text = japanese_to_romaji_with_accent(text)
    text = re.sub(r'([A-Za-z])$', r'\1.', text)
    return text


def japanese_cleaners2(text):
    return japanese_cleaners(text).replace('ts', 'ʦ').replace('...', '…')

def japanese_cleaners3(text):
    text = japanese_to_ipa3(text)
    if "<<" in text or ">>" in text or "¡" in text or "¿" in text:
        text = text.replace("<<","«")
        text = text.replace(">>","»")
        text = text.replace("!","¡")
        text = text.replace("?","¿")
        
    if'"'in text:
        text = text.replace('"','”')
    
    if'--'in text:
        text = text.replace('--','—')
    if ' ' in text: 
        text = text.replace(' ','')
    return text



# ------------------------------
''' cjke type cleaners below '''
#- text for these cleaners must be labeled first
# ex1 (single) : some.wav|[EN]put some text here[EN]
# ex2 (multi) : some.wav|0|[EN]put some text here[EN]
# ------------------------------


def kej_cleaners(text):
    text = re.sub(r'\[KO\](.*?)\[KO\]',
                  lambda x: korean_to_ipa(x.group(1))+' ', text)
    text = re.sub(r'\[EN\](.*?)\[EN\]',
                  lambda x: english_to_ipa2(x.group(1)) + ' ', text)
    text = re.sub(r'\[JA\](.*?)\[JA\]',
                  lambda x: japanese_to_ipa2(x.group(1)) + ' ', text)
    text = re.sub(r'\s+$', '', text)
    text = re.sub(r'([^\.,!\?\-…~])$', r'\1.', text)
    return text


def cjks_cleaners(text):
    text = re.sub(r'\[JA\](.*?)\[JA\]',
                  lambda x: japanese_to_ipa(x.group(1))+' ', text)
    #text = re.sub(r'\[SA\](.*?)\[SA\]',
    #              lambda x: devanagari_to_ipa(x.group(1))+' ', text)
    text = re.sub(r'\[EN\](.*?)\[EN\]',
                  lambda x: english_to_lazy_ipa(x.group(1))+' ', text)
    text = re.sub(r'\s+$', '', text)
    text = re.sub(r'([^\.,!\?\-…~])$', r'\1.', text)
    return text

'''
#- reserves

def thai_cleaners(text):
    text = num_to_thai(text)
    text = latin_to_thai(text)
    return text


def shanghainese_cleaners(text):
    text = shanghainese_to_ipa(text)
    text = re.sub(r'([^\.,!\?\-…~])$', r'\1.', text)
    return text


def chinese_dialect_cleaners(text):
    text = re.sub(r'\[ZH\](.*?)\[ZH\]',
                  lambda x: chinese_to_ipa2(x.group(1))+' ', text)
    text = re.sub(r'\[JA\](.*?)\[JA\]',
                  lambda x: japanese_to_ipa3(x.group(1)).replace('Q', 'ʔ')+' ', text)
    text = re.sub(r'\[SH\](.*?)\[SH\]', lambda x: shanghainese_to_ipa(x.group(1)).replace('1', '˥˧').replace('5',
                  '˧˧˦').replace('6', '˩˩˧').replace('7', '˥').replace('8', '˩˨').replace('ᴀ', 'ɐ').replace('ᴇ', 'e')+' ', text)
    text = re.sub(r'\[GD\](.*?)\[GD\]',
                  lambda x: cantonese_to_ipa(x.group(1))+' ', text)
    text = re.sub(r'\[EN\](.*?)\[EN\]',
                  lambda x: english_to_lazy_ipa2(x.group(1))+' ', text)
    text = re.sub(r'\[([A-Z]{2})\](.*?)\[\1\]', lambda x: ngu_dialect_to_ipa(x.group(2), x.group(
        1)).replace('ʣ', 'dz').replace('ʥ', 'dʑ').replace('ʦ', 'ts').replace('ʨ', 'tɕ')+' ', text)
    text = re.sub(r'\s+$', '', text)
    text = re.sub(r'([^\.,!\?\-…~])$', r'\1.', text)
    return text
'''
def japanese_cleaners3(text):
   
    global orig 
    
    orig = text # saving the original unmodifed text for future use
    
    text = japanese_to_ipa2(text)
 
    if '' in text: 
        text = text.replace('','')
    if "<<" in text or ">>" in text or "¡" in text or "¿" in text:
        text = text.replace("<<","«")
        text = text.replace(">>","»")
        text = text.replace("!","¡")
        text = text.replace("?","¿")
    
    if'"'in text:
        text = text.replace('"','”')
    
    if'--'in text:
        text = text.replace('--','—')
    
    text = text.replace("#","ʔ")
    text = text.replace("^","")

    text = text.replace("kj","kʲ")
    text = text.replace("kj","kʲ")
    text = text.replace("ɾj","ɾʲ")

    text = text.replace("mj","mʲ")
    text = text.replace("ʃ","ɕ")
    text = text.replace("*","")
    text = text.replace("bj","bʲ")
    text = text.replace("h","ç")
    text = text.replace("gj","gʲ")

  
    return text

def japanese_cleaners4(text):
    
    text = japanese_cleaners3(text)
    
    if "にゃ" in orig:
        text = text.replace("na","nʲa") 
        
    elif "にゅ" in orig:
        text = text.replace("n","nʲ")
        
    elif "にょ" in orig:
        text = text.replace("n","nʲ")
    elif "にぃ" in orig:
        text = text.replace("ni i","niː")
        
    elif "いゃ" in orig:
        text = text.replace("i↑ja","ja")
    
    elif "いゃ" in orig:
        text = text.replace("i↑ja","ja")
        
    elif "ひょ" in orig:
        text = text.replace("ço","çʲo")
        
    elif "しょ" in orig:
        text = text.replace("ɕo","ɕʲo")
        

    text = text.replace("Q","ʔ")
    text = text.replace("N","ɴ")
        
    text = re.sub(r'.ʔ', 'ʔ', text)
    text = text.replace('" ', '"')
    text = text.replace('” ', '”')
    
    return text

config = yaml.safe_load(open(str(cached_path('hf://yl4579/StyleTTS2-LJSpeech/Models/LJSpeech/config.yml'))))

# load pretrained ASR model
ASR_config = config.get('ASR_config', False)
ASR_path = config.get('ASR_path', False)
text_aligner = load_ASR_models(ASR_path, ASR_config)

# load pretrained F0 model
F0_path = config.get('F0_path', False)
pitch_extractor = load_F0_models(F0_path)

# load BERT model
from Utils.PLBERT.util import load_plbert
BERT_path = config.get('PLBERT_dir', False)
plbert = load_plbert(BERT_path)

model = build_model(recursive_munch(config['model_params']), text_aligner, pitch_extractor, plbert)
_ = [model[key].eval() for key in model]
_ = [model[key].to(device) for key in model]

# params_whole = torch.load("Models/LJSpeech/epoch_2nd_00100.pth", map_location='cpu')
params_whole = torch.load("Models/Kaede.pth", map_location='cpu')
params = params_whole['net']

for key in model:
    if key in params:
        print('%s loaded' % key)
        try:
            model[key].load_state_dict(params[key])
        except:
            from collections import OrderedDict
            state_dict = params[key]
            new_state_dict = OrderedDict()
            for k, v in state_dict.items():
                name = k[7:] # remove `module.`
                new_state_dict[name] = v
            # load params
            model[key].load_state_dict(new_state_dict, strict=False)
#             except:
#                 _load(params[key], model[key])
_ = [model[key].eval() for key in model]

from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule

sampler = DiffusionSampler(
    model.diffusion.diffusion,
    sampler=ADPM2Sampler(),
    sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=0.68, rho=4.6), # empirical parameters
    clamp=False
)

def inference(text, noise, diffusion_steps=5, embedding_scale=1):
    # text = text.strip()
    # text = text.replace('"', '')
    # ps = global_phonemizer.phonemize([text])
    # ps = word_tokenize(ps[0])
    # ps = ' '.join(ps)

    text = japanese_cleaners4(text)
    print(text)

    tokens = textclenaer(text)
    tokens.insert(0, 0)
    tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)

    with torch.no_grad():
        input_lengths = torch.LongTensor([tokens.shape[-1]]).to(tokens.device)
        text_mask = length_to_mask(input_lengths).to(tokens.device)

        t_en = model.text_encoder(tokens, input_lengths, text_mask)
        bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
        d_en = model.bert_encoder(bert_dur).transpose(-1, -2)

        s_pred = sampler(noise,
              embedding=bert_dur[0].unsqueeze(0), num_steps=diffusion_steps,
              embedding_scale=embedding_scale).squeeze(0)

        s = s_pred[:, 128:]
        ref = s_pred[:, :128]

        d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask)

        x, _ = model.predictor.lstm(d)
        duration = model.predictor.duration_proj(x)
        duration = torch.sigmoid(duration).sum(axis=-1)
        pred_dur = torch.round(duration.squeeze()).clamp(min=1)

        pred_dur[-1] += 5

        pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))
        c_frame = 0
        for i in range(pred_aln_trg.size(0)):
            pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1
            c_frame += int(pred_dur[i].data)

        # encode prosody
        en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device))
        F0_pred, N_pred = model.predictor.F0Ntrain(en, s)
        out = model.decoder((t_en @ pred_aln_trg.unsqueeze(0).to(device)),
                                F0_pred, N_pred, ref.squeeze().unsqueeze(0))

    return out.squeeze().cpu().numpy()

def LFinference(text, s_prev, noise, alpha=0.7, diffusion_steps=5, embedding_scale=1):
  # text = text.strip()
  # text = text.replace('"', '')
  # ps = global_phonemizer.phonemize([text])
  # ps = word_tokenize(ps[0])
  # ps = ' '.join(ps)
  text = japanese_cleaners4(text)
  print(text)
  tokens = textclenaer(text)
  tokens.insert(0, 0)
  tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)

  with torch.no_grad():
      input_lengths = torch.LongTensor([tokens.shape[-1]]).to(tokens.device)
      text_mask = length_to_mask(input_lengths).to(tokens.device)

      t_en = model.text_encoder(tokens, input_lengths, text_mask)
      bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
      d_en = model.bert_encoder(bert_dur).transpose(-1, -2)

      s_pred = sampler(noise,
            embedding=bert_dur[0].unsqueeze(0), num_steps=diffusion_steps,
            embedding_scale=embedding_scale).squeeze(0)

      if s_prev is not None:
          # convex combination of previous and current style
          s_pred = alpha * s_prev + (1 - alpha) * s_pred

      s = s_pred[:, 128:]
      ref = s_pred[:, :128]

      d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask)

      x, _ = model.predictor.lstm(d)
      duration = model.predictor.duration_proj(x)
      duration = torch.sigmoid(duration).sum(axis=-1)
      pred_dur = torch.round(duration.squeeze()).clamp(min=1)

      pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))
      c_frame = 0
      for i in range(pred_aln_trg.size(0)):
          pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1
          c_frame += int(pred_dur[i].data)

      # encode prosody
      en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device))
      F0_pred, N_pred = model.predictor.F0Ntrain(en, s)
      out = model.decoder((t_en @ pred_aln_trg.unsqueeze(0).to(device)),
                              F0_pred, N_pred, ref.squeeze().unsqueeze(0))

  return out.squeeze().cpu().numpy(), s_pred