import re import gradio as gr from huggingface_hub import InferenceClient client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") system_instructions = """ [INST] You will be provided with text, and your task is to translate it into emojis. DO NOT USE ANY REGULAR TEXT. Do your best with emojis only. Translate this text: """ def generate_translation(prompt): generate_kwargs = dict( temperature=0.01, max_new_tokens=1024, top_p=0.95, repetition_penalty=1.0, do_sample=True, seed=42, ) formatted_prompt = system_instructions + prompt + "[/INST]" stream = client.text_generation( formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text emoji_pattern = r"[^\u0021-\u007E\u00A0-\uD7FF\uE000-\uFDCF\uFF00-\uFFEF\u10000-\u10FFFF\u0300-\u036F\u1F00-\u1F1F\u1F20-\u1F7F\u2600-\u26FF\u2700-\u27BF]+?" filtered_output = re.findall(emoji_pattern, output) return ''.join(filtered_output) with gr.Blocks() as demo: gr.HTML("""

Emoji Translator😊🤗

Translate any text into emojis!
""") with gr.Row(): name = gr.Textbox(label="Enter text") output = gr.Textbox(label="Translation") translate_btn = gr.Button("Translate!") translate_btn.click(fn=generate_translation, inputs=name, outputs=output, api_name="translate") if __name__ == "__main__": demo.launch(show_api=False)