Spaces:
Runtime error
Runtime error
File size: 5,364 Bytes
66a6dc0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
import auraloss
import numpy as np
import pytorch_lightning as pl
from deepafx_st.callbacks.plotting import plot_multi_spectrum
from deepafx_st.metrics import (
LoudnessError,
SpectralCentroidError,
CrestFactorError,
PESQ,
MelSpectralDistance,
)
class LogAudioCallback(pl.callbacks.Callback):
def __init__(self, num_examples=4, peak_normalize=True, sample_rate=22050):
super().__init__()
self.num_examples = 4
self.peak_normalize = peak_normalize
self.metrics = {
"PESQ": PESQ(sample_rate),
"MRSTFT": auraloss.freq.MultiResolutionSTFTLoss(
fft_sizes=[32, 128, 512, 2048, 8192, 32768],
hop_sizes=[16, 64, 256, 1024, 4096, 16384],
win_lengths=[32, 128, 512, 2048, 8192, 32768],
w_sc=0.0,
w_phs=0.0,
w_lin_mag=1.0,
w_log_mag=1.0,
),
"MSD": MelSpectralDistance(sample_rate),
"SCE": SpectralCentroidError(sample_rate),
"CFE": CrestFactorError(),
"LUFS": LoudnessError(sample_rate),
}
self.outputs = []
def on_validation_batch_end(
self,
trainer,
pl_module,
outputs,
batch,
batch_idx,
dataloader_idx,
):
"""Called when the validation batch ends."""
if outputs is not None:
examples = np.min([self.num_examples, outputs["x"].shape[0]])
self.outputs.append(outputs)
if batch_idx == 0:
for n in range(examples):
if batch_idx == 0:
self.log_audio(
outputs,
n,
pl_module.hparams.sample_rate,
pl_module.hparams.val_length,
trainer.global_step,
trainer.logger,
)
def on_validation_end(self, trainer, pl_module):
metrics = {
"PESQ": [],
"MRSTFT": [],
"MSD": [],
"SCE": [],
"CFE": [],
"LUFS": [],
}
for output in self.outputs:
for metric_name, metric in self.metrics.items():
try:
val = metric(output["y_hat"], output["y"])
metrics[metric_name].append(val)
except:
pass
# log final mean metrics
for metric_name, metric in metrics.items():
val = np.mean(metric)
trainer.logger.experiment.add_scalar(
f"metrics/{metric_name}", val, trainer.global_step
)
# clear outputs
self.outputs = []
def compute_metrics(self, metrics_dict, outputs, batch_idx, global_step):
# extract audio
y = outputs["y"][batch_idx, ...].float()
y_hat = outputs["y_hat"][batch_idx, ...].float()
# compute all metrics
for metric_name, metric in self.metrics.items():
try:
val = metric(y_hat.view(1, 1, -1), y.view(1, 1, -1))
metrics_dict[metric_name].append(val)
except:
pass
def log_audio(self, outputs, batch_idx, sample_rate, n_fft, global_step, logger):
x = outputs["x"][batch_idx, ...].float()
y = outputs["y"][batch_idx, ...].float()
y_hat = outputs["y_hat"][batch_idx, ...].float()
if self.peak_normalize:
x /= x.abs().max()
y /= y.abs().max()
y_hat /= y_hat.abs().max()
logger.experiment.add_audio(
f"x/{batch_idx+1}",
x[0:1, :],
global_step,
sample_rate=sample_rate,
)
logger.experiment.add_audio(
f"y/{batch_idx+1}",
y[0:1, :],
global_step,
sample_rate=sample_rate,
)
logger.experiment.add_audio(
f"y_hat/{batch_idx+1}",
y_hat[0:1, :],
global_step,
sample_rate=sample_rate,
)
if "y_ref" in outputs:
y_ref = outputs["y_ref"][batch_idx, ...].float()
if self.peak_normalize:
y_ref /= y_ref.abs().max()
logger.experiment.add_audio(
f"y_ref/{batch_idx+1}",
y_ref[0:1, :],
global_step,
sample_rate=sample_rate,
)
logger.experiment.add_image(
f"spec/{batch_idx+1}",
compare_spectra(
y_hat[0:1, :],
y[0:1, :],
x[0:1, :],
sample_rate=sample_rate,
n_fft=n_fft,
),
global_step,
)
def compare_spectra(
deepafx_y_hat, y, x, baseline_y_hat=None, sample_rate=44100, n_fft=16384
):
legend = ["Corrupted"]
signals = [x]
if baseline_y_hat is not None:
legend.append("Baseline")
signals.append(baseline_y_hat)
legend.append("DeepAFx")
signals.append(deepafx_y_hat)
legend.append("Target")
signals.append(y)
image = plot_multi_spectrum(
ys=signals,
legend=legend,
sample_rate=sample_rate,
n_fft=n_fft,
)
return image
|