Spaces:
Runtime error
Runtime error
File size: 8,468 Bytes
66a6dc0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
import torch
import torchaudio
import scipy.signal
import numpy as np
import pyloudnorm as pyln
import matplotlib.pyplot as plt
from deepafx_st.processors.dsp.compressor import compressor
from tqdm import tqdm
class BaselineEQ(torch.nn.Module):
def __init__(
self,
ntaps: int = 63,
n_fft: int = 65536,
sample_rate: float = 44100,
):
super().__init__()
self.ntaps = ntaps
self.n_fft = n_fft
self.sample_rate = sample_rate
# compute the target spectrum
# print("Computing target spectrum...")
# self.target_spec, self.sm_target_spec = self.analyze_speech_dataset(filepaths)
# self.plot_spectrum(self.target_spec, filename="targetEQ")
# self.plot_spectrum(self.sm_target_spec, filename="targetEQsm")
def forward(self, x, y):
bs, ch, s = x.size()
x = x.view(bs * ch, -1)
y = y.view(bs * ch, -1)
in_spec = self.get_average_spectrum(x)
ref_spec = self.get_average_spectrum(y)
sm_in_spec = self.smooth_spectrum(in_spec)
sm_ref_spec = self.smooth_spectrum(ref_spec)
# self.plot_spectrum(in_spec, filename="inSpec")
# self.plot_spectrum(sm_in_spec, filename="inSpecsm")
# design inverse FIR filter to match target EQ
freqs = np.linspace(0, 1.0, num=(self.n_fft // 2) + 1)
response = sm_ref_spec / sm_in_spec
response[-1] = 0.0 # zero gain at nyquist
b = scipy.signal.firwin2(
self.ntaps,
freqs * (self.sample_rate / 2),
response,
fs=self.sample_rate,
)
# scale the coefficients for less intense filter
# clearb *= 0.5
# apply the filter
x_filt = scipy.signal.lfilter(b, [1.0], x.numpy())
x_filt = torch.tensor(x_filt.astype("float32"))
if False:
# plot the filter response
w, h = scipy.signal.freqz(b, fs=self.sample_rate, worN=response.shape[-1])
fig, ax1 = plt.subplots()
ax1.set_title("Digital filter frequency response")
ax1.plot(w, 20 * np.log10(abs(h + 1e-8)))
ax1.plot(w, 20 * np.log10(abs(response + 1e-8)))
ax1.set_xscale("log")
ax1.set_ylim([-12, 12])
plt.grid(c="lightgray")
plt.savefig(f"inverse.png")
x_filt_avg_spec = self.get_average_spectrum(x_filt)
sm_x_filt_avg_spec = self.smooth_spectrum(x_filt_avg_spec)
y_avg_spec = self.get_average_spectrum(y)
sm_y_avg_spec = self.smooth_spectrum(y_avg_spec)
compare = torch.stack(
[
torch.tensor(sm_in_spec),
torch.tensor(sm_x_filt_avg_spec),
torch.tensor(sm_ref_spec),
torch.tensor(sm_y_avg_spec),
]
)
self.plot_multi_spectrum(
compare,
legend=["in", "out", "target curve", "actual target"],
filename="outSpec",
)
return x_filt
def analyze_speech_dataset(self, filepaths, peak=-3.0):
avg_spec = []
for filepath in tqdm(filepaths, ncols=80):
x, sr = torchaudio.load(filepath)
x /= x.abs().max()
x *= 10 ** (peak / 20.0)
avg_spec.append(self.get_average_spectrum(x))
avg_specs = torch.stack(avg_spec)
avg_spec = avg_specs.mean(dim=0).numpy()
avg_spec_std = avg_specs.std(dim=0).numpy()
# self.plot_multi_spectrum(avg_specs, filename="allTargetEQs")
# self.plot_spectrum_stats(avg_spec, avg_spec_std, filename="targetEQstats")
sm_avg_spec = self.smooth_spectrum(avg_spec)
return avg_spec, sm_avg_spec
def smooth_spectrum(self, H):
# apply Savgol filter for smoothed target curve
return scipy.signal.savgol_filter(H, 1025, 2)
def get_average_spectrum(self, x):
# x = x[:, : self.n_fft]
X = torch.stft(x, self.n_fft, return_complex=True, normalized=True)
# fft_size = self.next_power_of_2(x.shape[-1])
# X = torch.fft.rfft(x, n=fft_size)
X = X.abs() # convert to magnitude
X = X.mean(dim=-1).view(-1) # average across frames
return X
@staticmethod
def next_power_of_2(x):
return 1 if x == 0 else int(2 ** np.ceil(np.log2(x)))
def plot_multi_spectrum(self, Hs, legend=[], filename=None):
bin_width = (self.sample_rate / 2) / (self.n_fft // 2)
freqs = np.arange(0, (self.sample_rate / 2) + bin_width, step=bin_width)
fig, ax1 = plt.subplots()
for H in Hs:
ax1.plot(
freqs,
20 * np.log10(abs(H) + 1e-8),
)
plt.legend(legend)
# avg_spec = Hs.mean(dim=0).numpy()
# ax1.plot(freqs, 20 * np.log10(avg_spec), color="k", linewidth=2)
ax1.set_xscale("log")
ax1.set_ylim([-80, 0])
plt.grid(c="lightgray")
if filename is not None:
plt.savefig(f"{filename}.png")
def plot_spectrum_stats(self, H_mean, H_std, filename=None):
bin_width = (self.sample_rate / 2) / (self.n_fft // 2)
freqs = np.arange(0, (self.sample_rate / 2) + bin_width, step=bin_width)
fig, ax1 = plt.subplots()
ax1.plot(freqs, 20 * np.log10(H_mean))
ax1.plot(
freqs,
(20 * np.log10(H_mean)) + (20 * np.log10(H_std)),
linestyle="--",
color="k",
)
ax1.plot(
freqs,
(20 * np.log10(H_mean)) - (20 * np.log10(H_std)),
linestyle="--",
color="k",
)
ax1.set_xscale("log")
ax1.set_ylim([-80, 0])
plt.grid(c="lightgray")
if filename is not None:
plt.savefig(f"{filename}.png")
def plot_spectrum(self, H, legend=[], filename=None):
bin_width = (self.sample_rate / 2) / (self.n_fft // 2)
freqs = np.arange(0, (self.sample_rate / 2) + bin_width, step=bin_width)
fig, ax1 = plt.subplots()
ax1.plot(freqs, 20 * np.log10(H))
ax1.set_xscale("log")
ax1.set_ylim([-80, 0])
plt.grid(c="lightgray")
plt.legend(legend)
if filename is not None:
plt.savefig(f"{filename}.png")
class BaslineComp(torch.nn.Module):
def __init__(
self,
sample_rate: float = 44100,
):
super().__init__()
self.sample_rate = sample_rate
self.meter = pyln.Meter(sample_rate)
def forward(self, x, y):
x_lufs = self.meter.integrated_loudness(x.view(-1).numpy())
y_lufs = self.meter.integrated_loudness(y.view(-1).numpy())
delta_lufs = y_lufs - x_lufs
threshold = 0.0
x_comp = x
x_comp_new = x
while delta_lufs > 0.5 and threshold > -80.0:
x_comp = x_comp_new # use the last setting
x_comp_new = compressor(
x.view(-1).numpy(),
self.sample_rate,
threshold=threshold,
ratio=3,
attack_time=0.001,
release_time=0.05,
knee_dB=6.0,
makeup_gain_dB=0.0,
)
x_comp_new = torch.tensor(x_comp_new)
x_comp_new /= x_comp_new.abs().max()
x_comp_new *= 10 ** (-12.0 / 20)
x_lufs = self.meter.integrated_loudness(x_comp_new.view(-1).numpy())
delta_lufs = y_lufs - x_lufs
threshold -= 0.5
return x_comp.view(1, 1, -1)
class BaselineEQAndComp(torch.nn.Module):
def __init__(
self,
ntaps=63,
n_fft=65536,
sample_rate=44100,
block_size=1024,
plugin_config=None,
):
super().__init__()
self.eq = BaselineEQ(ntaps, n_fft, sample_rate)
self.comp = BaslineComp(sample_rate)
def forward(self, x, y):
with torch.inference_mode():
x /= x.abs().max()
y /= y.abs().max()
x *= 10 ** (-12.0 / 20)
y *= 10 ** (-12.0 / 20)
x = self.eq(x, y)
x /= x.abs().max()
y /= y.abs().max()
x *= 10 ** (-12.0 / 20)
y *= 10 ** (-12.0 / 20)
x = self.comp(x, y)
x /= x.abs().max()
x *= 10 ** (-12.0 / 20)
return x
|