Spaces:
Runtime error
Runtime error
import io | |
import torch | |
import PIL.Image | |
import numpy as np | |
import scipy.signal | |
import librosa.display | |
import matplotlib.pyplot as plt | |
from torch.functional import Tensor | |
from torchvision.transforms import ToTensor | |
def compute_comparison_spectrogram( | |
x: np.ndarray, | |
y: np.ndarray, | |
sample_rate: float = 44100, | |
n_fft: int = 2048, | |
hop_length: int = 1024, | |
) -> Tensor: | |
X = librosa.stft(x, n_fft=n_fft, hop_length=hop_length) | |
X_db = librosa.amplitude_to_db(np.abs(X), ref=np.max) | |
Y = librosa.stft(y, n_fft=n_fft, hop_length=hop_length) | |
Y_db = librosa.amplitude_to_db(np.abs(Y), ref=np.max) | |
fig, axs = plt.subplots(figsize=(9, 6), nrows=2) | |
img = librosa.display.specshow( | |
X_db, | |
ax=axs[0], | |
hop_length=hop_length, | |
x_axis="time", | |
y_axis="log", | |
sr=sample_rate, | |
) | |
# fig.colorbar(img, ax=axs[0]) | |
img = librosa.display.specshow( | |
Y_db, | |
ax=axs[1], | |
hop_length=hop_length, | |
x_axis="time", | |
y_axis="log", | |
sr=sample_rate, | |
) | |
# fig.colorbar(img, ax=axs[1]) | |
plt.tight_layout() | |
buf = io.BytesIO() | |
plt.savefig(buf, format="jpeg") | |
buf.seek(0) | |
image = PIL.Image.open(buf) | |
image = ToTensor()(image) | |
plt.close("all") | |
return image | |
def plot_multi_spectrum( | |
ys=None, | |
Hs=None, | |
legend=[], | |
title="Spectrum", | |
filename=None, | |
sample_rate=44100, | |
n_fft=1024, | |
zero_mean=False, | |
): | |
if Hs is None: | |
Hs = [] | |
for y in ys: | |
X = get_average_spectrum(y, n_fft) | |
X_sm = smooth_spectrum(X) | |
Hs.append(X_sm) | |
bin_width = (sample_rate / 2) / (n_fft // 2) | |
freqs = np.arange(0, (sample_rate / 2) + bin_width, step=bin_width) | |
fig, ax1 = plt.subplots() | |
for idx, H in enumerate(Hs): | |
H = np.nan_to_num(H) | |
H = np.clip(H, 0, np.max(H)) | |
H_dB = 20 * np.log10(H + 1e-8) | |
if zero_mean: | |
H_dB -= np.mean(H_dB) | |
if "Target" in legend[idx]: | |
ax1.plot(freqs, H_dB, linestyle="--", color="k") | |
else: | |
ax1.plot(freqs, H_dB) | |
plt.legend(legend) | |
ax1.set_xscale("log") | |
ax1.set_ylim([-80, 0]) | |
ax1.set_xlim([100, 11000]) | |
plt.title(title) | |
plt.ylabel("Magnitude (dB)") | |
plt.xlabel("Frequency (Hz)") | |
plt.grid(c="lightgray", which="both") | |
if filename is not None: | |
plt.savefig(f"{filename}.png", dpi=300) | |
plt.tight_layout() | |
buf = io.BytesIO() | |
plt.savefig(buf, format="jpeg") | |
buf.seek(0) | |
image = PIL.Image.open(buf) | |
image = ToTensor()(image) | |
plt.close("all") | |
return image | |
def smooth_spectrum(H): | |
# apply Savgol filter for smoothed target curve | |
return scipy.signal.savgol_filter(H, 1025, 2) | |
def get_average_spectrum(x, n_fft): | |
X = torch.stft(x, n_fft, return_complex=True, normalized=True) | |
X = X.abs() # convert to magnitude | |
X = X.mean(dim=-1).view(-1) # average across frames | |
return X | |