deepafx-st / deepafx_st /models /mobilenetv2.py
yourusername's picture
:beers: cheers
66a6dc0
# BSD 3-Clause License
# Copyright (c) Soumith Chintala 2016,
# All rights reserved.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
# * Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
# Adaptation of the PyTorch torchvision MobileNetV2 without a classifier.
# See source here: https://pytorch.org/vision/0.8/_modules/torchvision/models/mobilenet.html#mobilenet_v2
from torch import nn
def _make_divisible(v, divisor, min_value=None):
"""
This function is taken from the original tf repo.
It ensures that all layers have a channel number that is divisible by 8
It can be seen here:
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
:param v:
:param divisor:
:param min_value:
:return:
"""
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
class ConvBNReLU(nn.Sequential):
def __init__(
self, in_planes, out_planes, kernel_size=3, stride=1, groups=1, norm_layer=None
):
padding = (kernel_size - 1) // 2
if norm_layer is None:
norm_layer = nn.BatchNorm2d
super(ConvBNReLU, self).__init__(
nn.Conv2d(
in_planes,
out_planes,
kernel_size,
stride,
padding,
groups=groups,
bias=False,
),
norm_layer(out_planes),
nn.ReLU6(inplace=True),
)
class InvertedResidual(nn.Module):
def __init__(self, inp, oup, stride, expand_ratio, norm_layer=None):
super(InvertedResidual, self).__init__()
self.stride = stride
assert stride in [1, 2]
if norm_layer is None:
norm_layer = nn.BatchNorm2d
hidden_dim = int(round(inp * expand_ratio))
self.use_res_connect = self.stride == 1 and inp == oup
layers = []
if expand_ratio != 1:
# pw
layers.append(
ConvBNReLU(inp, hidden_dim, kernel_size=1, norm_layer=norm_layer)
)
layers.extend(
[
# dw
ConvBNReLU(
hidden_dim,
hidden_dim,
stride=stride,
groups=hidden_dim,
norm_layer=norm_layer,
),
# pw-linear
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
norm_layer(oup),
]
)
self.conv = nn.Sequential(*layers)
def forward(self, x):
if self.use_res_connect:
return x + self.conv(x)
else:
return self.conv(x)
class MobileNetV2(nn.Module):
def __init__(
self,
embed_dim=1028,
width_mult=1.0,
inverted_residual_setting=None,
round_nearest=8,
block=None,
norm_layer=None,
):
"""
MobileNet V2 main class
Args:
embed_dim (int): Number of channels in the final output.
width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount
inverted_residual_setting: Network structure
round_nearest (int): Round the number of channels in each layer to be a multiple of this number
Set to 1 to turn off rounding
block: Module specifying inverted residual building block for mobilenet
norm_layer: Module specifying the normalization layer to use
"""
super(MobileNetV2, self).__init__()
if block is None:
block = InvertedResidual
if norm_layer is None:
norm_layer = nn.BatchNorm2d
input_channel = 32
last_channel = embed_dim / width_mult
if inverted_residual_setting is None:
inverted_residual_setting = [
# t, c, n, s
[1, 16, 1, 1],
[6, 24, 2, 2],
[6, 32, 3, 2],
[6, 64, 4, 2],
[6, 96, 3, 1],
[6, 160, 3, 2],
[6, 320, 1, 1],
]
# only check the first element, assuming user knows t,c,n,s are required
if (
len(inverted_residual_setting) == 0
or len(inverted_residual_setting[0]) != 4
):
raise ValueError(
"inverted_residual_setting should be non-empty "
"or a 4-element list, got {}".format(inverted_residual_setting)
)
# building first layer
input_channel = _make_divisible(input_channel * width_mult, round_nearest)
self.last_channel = _make_divisible(
last_channel * max(1.0, width_mult), round_nearest
)
features = [ConvBNReLU(3, input_channel, stride=2, norm_layer=norm_layer)]
# building inverted residual blocks
for t, c, n, s in inverted_residual_setting:
output_channel = _make_divisible(c * width_mult, round_nearest)
for i in range(n):
stride = s if i == 0 else 1
features.append(
block(
input_channel,
output_channel,
stride,
expand_ratio=t,
norm_layer=norm_layer,
)
)
input_channel = output_channel
# building last several layers
features.append(
ConvBNReLU(
input_channel, self.last_channel, kernel_size=1, norm_layer=norm_layer
)
)
# make it nn.Sequential
self.features = nn.Sequential(*features)
# weight initialization
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode="fan_out")
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.zeros_(m.bias)
def _forward_impl(self, x):
# This exists since TorchScript doesn't support inheritance, so the superclass method
# (this one) needs to have a name other than `forward` that can be accessed in a subclass
return self.features(x)
# return the features directly, no classifier or pooling
def forward(self, x):
return self._forward_impl(x)