Spaces:
Runtime error
Runtime error
File size: 29,170 Bytes
39d5658 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import argparse
from collections import OrderedDict
import json
import math
import os
import pandas as pd
import sys
import time
import torch
import torch.backends.cudnn as cudnn
import torch.cuda.amp as amp
from torch.distributed.optim import ZeroRedundancyOptimizer
import torch.nn.parallel
import torchvision.transforms as transforms
import torchvision.transforms._transforms_video as transforms_video
import wandb
from eval_zeroshot import get_similarity_matrix
from lavila.data import datasets
from lavila.data.video_transforms import Permute
from lavila.models import models
from lavila.utils.meter import AverageMeter, ProgressMeter
from lavila.utils import distributed as dist_utils
from lavila.utils.evaluation_ek100mir import get_mAP, get_nDCG
from lavila.utils.preprocess import generate_tokenizer
from lavila.utils.random import random_seed
from lavila.utils.scheduler import cosine_scheduler
class GroundTruthDataset(torch.utils.data.Dataset):
def __init__(self, dataset):
self.dataset = dataset
def __getitem__(self, index):
return 1, self.dataset[index]
def __len__(self):
return len(self.dataset)
class PseudoLabelDataset(torch.utils.data.Dataset):
def __init__(self, dataset):
self.dataset = dataset
def __getitem__(self, index):
return 0, self.dataset[index]
def __len__(self):
return len(self.dataset)
def get_args_parser():
parser = argparse.ArgumentParser(description='LaVid training and evaluation', add_help=False)
# Data
parser.add_argument('--dataset', default='ego4d', type=str, choices=['ego4d'])
parser.add_argument('--root', default='datasets/Ego4D/video_5min_chunks_288px/',
type=str, help='path to dataset root')
parser.add_argument('--metadata', default='datasets/Ego4D/ego4d_train.pkl',
type=str, help='path to metadata file')
parser.add_argument('--metadata-aux', default=None, nargs='+',
type=str, help='path to metadata file (auxiliary data with pseudo narrations)')
parser.add_argument('--output-dir', default='./', type=str, help='output dir')
parser.add_argument('--clip-length', default=4, type=int, help='clip length')
parser.add_argument('--clip-stride', default=16, type=int, help='clip stride')
parser.add_argument('--sparse-sample', action='store_true', help='switch to sparse sampling')
parser.add_argument('--narration-selection', default='random',
choices=['random', 'concat'],
type=str, help='selection strategy if multiple narrations per clip')
parser.add_argument('--num-hard-neg', default=0, type=int, help='number of hard negatives per video')
# Model
parser.add_argument('--model', default='CLIP_OPENAI_TIMESFORMER_BASE', type=str)
parser.add_argument('--norm-embed', action='store_true', help='norm text and visual embed if set True')
parser.add_argument('--resume', default='', type=str, help='path to resume from')
parser.add_argument('--load-visual-pretrained', default=None, type=str,
help='path to pretrained model (in1k/in21k/...)')
parser.add_argument('--project-embed-dim', default=256, type=int, help='embed dim after projection')
parser.add_argument('--use-cls-token', action='store_true', help='use feature at [CLS] if set True')
parser.add_argument('--contrastive-use-vissl', action='store_true', help='use contrastive implementation in vissl')
parser.add_argument('--gated-xattn', action='store_true', help='use gated x-attn in VCLM_GPT2')
parser.add_argument('--random-init-gpt2', action='store_true', help='random initialize params of text decoder in VCLM_GPT2')
parser.add_argument('--timesformer-gated-xattn', action='store_true', help='use gated x-attn in TimeSformer')
parser.add_argument('--timesformer-freeze-space', action='store_true', help='freeze space part in TimeSformer')
parser.add_argument('--drop-path-rate', default=0., type=float, help='DropPath rate')
parser.add_argument('--freeze-visual-vclm', action='store_true', help='freeze the visual model in VCLM_GPT2')
parser.add_argument('--freeze-visual-vclm-temporal', action='store_true', help='freeze the temporal part of visual model in VCLM_GPT2')
parser.add_argument('--freeze-lm-vclm', action='store_true', help='freeze the lm in VCLM_GPT2')
parser.add_argument('--find-unused-parameters', action='store_true',
help='do this during DDP (useful for models with tied weights)')
# Training
parser.add_argument('--epochs', default=5, type=int)
parser.add_argument('--warmup-epochs', default=1, type=int)
parser.add_argument('--start-epoch', default=0, type=int)
parser.add_argument('--batch-size', default=32, type=int,
help='number of samples per-device/per-gpu')
parser.add_argument('--temperature-init', default=0.07, type=float,
help='init. logit temperature for samples')
parser.add_argument('--freeze-temperature', action='store_true',
help='freeze logit temperature')
parser.add_argument('--pseudo-temperature-init', default=0.07, type=float,
help='init. logit temperature for pseudo-narrated samples')
parser.add_argument('--freeze-pseudo-temperature', action='store_true',
help='freeze logit temperature (for pseudo-narrated samples)')
parser.add_argument('--lr', default=3e-5, type=float)
parser.add_argument('--fix-lr', action='store_true', help='disable cosine lr decay if set True')
parser.add_argument('--lr-start', default=1e-6, type=float,
help='initial warmup lr')
parser.add_argument('--lr-end', default=1e-5, type=float,
help='minimum final lr')
parser.add_argument('--clip-grad-type', default='norm', choices=['norm', 'value'])
parser.add_argument('--clip-grad-value', default=None, type=float, help='')
parser.add_argument('--update-freq', default=1, type=int,
help='optimizer update frequency (i.e. gradient accumulation steps)')
parser.add_argument('--wd', default=0.01, type=float)
parser.add_argument('--betas', default=(0.9, 0.999), nargs=2, type=float)
parser.add_argument('--eps', default=1e-8, type=float)
parser.add_argument('--eval-freq', default=99, type=int)
parser.add_argument('--eval-in-middle-freq', default=-1, type=int)
parser.add_argument('--save-freq', default=1, type=int)
parser.add_argument('--disable-amp', action='store_true',
help='disable mixed-precision training (requires more memory and compute)')
parser.add_argument('--use-zero', action='store_true',
help='use ZeroRedundancyOptimizer to save memory')
parser.add_argument('--use-checkpoint', action='store_true',
help='use gradient checkpointing during training for significantly less GPU usage')
parser.add_argument('--use-half', action='store_true', help='evaluate using half-precision')
# System
parser.add_argument('--print-freq', default=10, type=int, help='print frequency')
parser.add_argument('-j', '--workers', default=10, type=int, metavar='N',
help='number of data loading workers per process')
parser.add_argument('--world-size', default=1, type=int,
help='number of nodes for distributed training')
parser.add_argument('--rank', default=0, type=int,
help='node rank for distributed training')
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument('--dist-url', default='env://', type=str,
help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str)
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--gpu', default=None, type=int, help='GPU id to use.')
parser.add_argument('--wandb', action='store_true', help='Enable WandB logging')
return parser
def main(args):
dist_utils.init_distributed_mode(args)
global best_acc1
random_seed(args.seed, dist_utils.get_rank())
print("=> creating model: {}".format(args.model))
model = getattr(models, args.model)(
pretrained=args.load_visual_pretrained,
pretrained2d=args.load_visual_pretrained is not None,
text_use_cls_token=args.use_cls_token,
project_embed_dim=args.project_embed_dim,
gated_xattn=args.gated_xattn,
random_init_gpt2=args.random_init_gpt2,
timesformer_gated_xattn=args.timesformer_gated_xattn,
timesformer_freeze_space=args.timesformer_freeze_space,
freeze_lm_vclm=args.freeze_lm_vclm,
freeze_visual_vclm=args.freeze_visual_vclm,
freeze_visual_vclm_temporal=args.freeze_visual_vclm_temporal,
num_frames=args.clip_length,
drop_path_rate=args.drop_path_rate,
temperature_init=args.temperature_init,
)
if args.freeze_temperature:
print('Freeze logit temperature')
model.logit_scale.requires_grad = False
model.cuda(args.gpu)
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.gpu], bucket_cap_mb=200,
find_unused_parameters=args.find_unused_parameters
)
tokenizer = generate_tokenizer(args.model)
if args.metadata_aux is None:
criterion = models.get_loss(args.model, args, tokenizer=tokenizer).cuda(args.gpu)
else:
criterion = models.loss.SSLCLIPLoss(
use_vissl=args.contrastive_use_vissl,
cache_labels=True,
rank=args.rank,
world_size=args.world_size,
scale_init=args.pseudo_temperature_init,
freeze_scale=args.freeze_pseudo_temperature,
).cuda(args.gpu)
p_wd, p_non_wd = [], []
for n, p in model.named_parameters():
if not p.requires_grad:
continue # frozen weights
if p.ndim < 2 or 'bias' in n or 'ln' in n or 'bn' in n:
p_non_wd.append(p)
else:
p_wd.append(p)
for n, p in criterion.named_parameters():
if not p.requires_grad:
continue
p_non_wd.append(p)
optim_params = [{"params": p_wd, "weight_decay": args.wd},
{"params": p_non_wd, "weight_decay": 0}]
if args.use_zero:
optimizer = ZeroRedundancyOptimizer(
optim_params, optimizer_class=torch.optim.AdamW,
lr=args.lr, betas=args.betas, eps=args.eps, weight_decay=args.wd
)
else:
optimizer = torch.optim.AdamW(optim_params, lr=args.lr, betas=args.betas,
eps=args.eps, weight_decay=args.wd)
scaler = amp.GradScaler(enabled=not args.disable_amp)
# optionally resume from a checkpoint (takes precedence over autoresume)
latest = os.path.join(args.output_dir, 'checkpoint.pt')
if os.path.isfile(latest):
args.resume = ''
if args.resume:
if os.path.isfile(args.resume):
print("=> loading resume checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume, map_location='cpu')
epoch = checkpoint['epoch'] if 'epoch' in checkpoint else 0
args.start_epoch = epoch
result = model.load_state_dict(checkpoint['state_dict'], strict=False)
print(result)
optimizer.load_state_dict(checkpoint['optimizer']) if 'optimizer' in checkpoint else ()
scaler.load_state_dict(checkpoint['scaler']) if 'scaler' in checkpoint else ()
criterion.load_state_dict(checkpoint['criterion']) if 'criterion' in checkpoint else ()
best_acc1 = checkpoint['best_acc1']
print("=> loaded resume checkpoint '{}' (epoch {})"
.format(args.resume, epoch))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
else:
# auto-resume from latest checkpoint in output directory
latest = os.path.join(args.output_dir, 'checkpoint.pt')
if os.path.isfile(latest):
print("=> loading latest checkpoint '{}'".format(latest))
latest_checkpoint = torch.load(latest, map_location='cpu')
args.start_epoch = latest_checkpoint['epoch']
model.load_state_dict(latest_checkpoint['state_dict'])
optimizer.load_state_dict(latest_checkpoint['optimizer'])
scaler.load_state_dict(latest_checkpoint['scaler'])
best_acc1 = latest_checkpoint['best_acc1']
print("=> loaded latest checkpoint '{}' (epoch {})"
.format(latest, latest_checkpoint['epoch']))
cudnn.benchmark = True
# Data loading code
print("=> creating dataset")
crop_size = 224 if '336PX' not in args.model else 336
transforms_list = [
Permute([3, 0, 1, 2]), # T H W C -> C T H W
transforms.RandomResizedCrop(crop_size, scale=(0.5, 1.0)),
]
if 'OPENAI' in args.model:
transforms_list.append(transforms_video.NormalizeVideo(mean=[108.3272985, 116.7460125, 104.09373615000001], std=[68.5005327, 66.6321579, 70.32316305]))
else:
transforms_list.append(transforms_video.NormalizeVideo(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375]))
train_transform = transforms.Compose(transforms_list)
# TODO: uncomment when evaluation is done later
val_transform = transforms.Compose([
Permute([3, 0, 1, 2]), # T H W C -> C T H W
transforms.Resize(crop_size),
transforms.CenterCrop(crop_size),
(transforms_video.NormalizeVideo(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375]) if 'OPENAI' not in args.model else
transforms_video.NormalizeVideo(mean=[108.3272985, 116.7460125, 104.09373615000001], std=[68.5005327, 66.6321579, 70.32316305]))
])
assert 'train' in args.metadata
train_dataset = datasets.get_dataset(train_transform, tokenizer, args, is_training=True)
args.metadata = args.metadata.replace('train', 'val')
val_dataset = datasets.get_dataset(val_transform, tokenizer, args, is_training=False)
args.metadata = args.metadata.replace('val', 'train')
if args.metadata_aux is not None:
train_dataset = GroundTruthDataset(train_dataset)
old_metadata = args.metadata
aux_dataset_list = []
for aux_i, aux_pkl in enumerate(args.metadata_aux):
args.metadata = aux_pkl
aux_dataset = datasets.get_dataset(train_transform, tokenizer, args, is_training=True)
aux_dataset_list.append(PseudoLabelDataset(aux_dataset))
print("auxiliary dataset [{}] : source = {}, len(aux_dataset) = {}".format(aux_i, aux_pkl, len(aux_dataset)))
pseudo_label_dataset = torch.utils.data.ConcatDataset(aux_dataset_list)
args.metadata = old_metadata
train_dataset = torch.utils.data.ConcatDataset([train_dataset, pseudo_label_dataset])
val_dataset = GroundTruthDataset(val_dataset)
ek100_dataset = datasets.VideoCaptionDatasetCLIP(
'ek100_mir',
'datasets/EK100/video_ht256px/',
'datasets/EK100/epic-kitchens-100-annotations/retrieval_annotations/EPIC_100_retrieval_test.csv',
transform=val_transform,
is_training=False,
tokenizer=tokenizer,
clip_length=args.clip_length,
clip_stride=args.clip_stride,
sparse_sample=False
)
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
val_sampler = torch.utils.data.distributed.DistributedSampler(val_dataset)
ek100_sampler = torch.utils.data.SequentialSampler(ek100_dataset)
else:
train_sampler = None
val_sampler = None
ek100_sampler = None
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
num_workers=args.workers, pin_memory=True, sampler=train_sampler, drop_last=True
)
print('len(train_loader) = {}'.format(len(train_loader)))
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=args.batch_size, shuffle=(val_sampler is None),
num_workers=args.workers, pin_memory=True, sampler=val_sampler, drop_last=False
)
print('len(val_loader) = {}'.format(len(val_loader)))
ek100_loader = torch.utils.data.DataLoader(
ek100_dataset, batch_size=args.batch_size * (1 + args.num_hard_neg), shuffle=(ek100_sampler is None),
num_workers=args.workers, pin_memory=True, sampler=ek100_sampler, drop_last=False
)
print('len(ek100_loader) = {}'.format(len(ek100_loader)))
if args.fix_lr:
lr_schedule = None
else:
lr_schedule = cosine_scheduler(
args.lr, args.lr_end, args.epochs, len(train_loader) // args.update_freq,
warmup_epochs=args.warmup_epochs, start_warmup_value=args.lr_start,
)
if dist_utils.is_main_process() and args.wandb:
wandb_id = os.path.split(args.output_dir)[-1]
wandb.init(project='LaVid', id=wandb_id, config=args, resume='allow')
print(args)
best_metric = 0.
print("=> beginning training")
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
train_sampler.set_epoch(epoch)
if hasattr(args, 'eval_in_middle_freq') and args.eval_in_middle_freq > 0:
train_stats = train(train_loader, model, criterion, optimizer, scaler, epoch, lr_schedule, args,
ek100_loader=ek100_loader, eval_in_middle=args.eval_in_middle_freq)
else:
train_stats = train(train_loader, model, criterion, optimizer, scaler, epoch, lr_schedule, args)
if args.model.startswith('CLIP'):
print('=> 0-shot on EK100')
similarity_matrix = get_similarity_matrix(ek100_loader, model, use_half=args.use_half)
similarity_matrix = (similarity_matrix + 1) / 2
video_id = pd.read_csv("datasets/EK100/epic-kitchens-100-annotations/retrieval_annotations/EPIC_100_retrieval_test.csv").values[:, 0]
text_id = pd.read_csv("datasets/EK100/epic-kitchens-100-annotations/retrieval_annotations/EPIC_100_retrieval_test_sentence.csv").values[:, 0]
indexes = [video_id.tolist().index(elem) for elem in text_id]
similarity_matrix = similarity_matrix[:, indexes]
rel_matrix = pd.read_pickle(
'datasets/EK100/epic-kitchens-100-annotations/retrieval_annotations/relevancy/caption_relevancy_EPIC_100_retrieval_test.pkl'
)
vis_map, txt_map, avg_map = get_mAP(similarity_matrix, rel_matrix)
print('mAP: V->T: {:.3f} T->V: {:.3f} AVG: {:.3f}'.format(vis_map, txt_map, avg_map))
vis_ndcg, txt_ndcg, avg_ndcg = get_nDCG(similarity_matrix, rel_matrix)
print('nDCG: V->T: {:.3f} T->V: {:.3f} AVG: {:.3f}'.format(vis_ndcg, txt_ndcg, avg_ndcg))
if avg_map > best_metric:
is_best = True
best_metric = avg_map
else:
is_best = False
else:
is_best = False
is_epoch = ((epoch + 1) % args.save_freq) == 0
if args.distributed and args.use_zero:
print("=> consolidating state_dict before saving (due to ZeRO)")
optimizer.consolidate_state_dict()
print('=> saving checkpoint')
dist_utils.save_on_master({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'criterion': criterion.state_dict(),
'optimizer': optimizer.state_dict() if dist_utils.get_rank() == 0 else {},
'scaler': scaler.state_dict(),
'best_acc1': best_metric,
'args': args,
}, is_best, args.output_dir, is_epoch=is_epoch)
if (epoch + 1) % args.eval_freq != 0:
continue
# TODO: add evaluation
val_stats = validate(val_loader, model, criterion, args)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in val_stats.items()},
'epoch': epoch}
if dist_utils.is_main_process():
if args.wandb:
wandb.log(log_stats)
with open(os.path.join(args.output_dir, 'log.txt'), 'a') as f:
f.write(json.dumps(log_stats) + '\n')
def train(train_loader, model, criterion, optimizer, scaler, epoch, lr_schedule, args, ek100_loader=None, eval_in_middle=0):
batch_time = AverageMeter('Time', ':6.2f')
data_time = AverageMeter('Data', ':6.2f')
mem = AverageMeter('Mem (GB)', ':6.1f')
metric_names = models.get_metric_names(args.model)
if args.metadata_aux is not None:
metric_names.extend(['num_gt', 'num_pseudo', 'clip_acc_gt', 'clip_acc_pseudo'])
iters_per_epoch = len(train_loader) // args.update_freq
metrics = OrderedDict([(name, AverageMeter(name, ':.2e')) for name in metric_names])
progress = ProgressMeter(
iters_per_epoch,
[batch_time, data_time, mem, *metrics.values()],
prefix="Epoch: [{}]".format(epoch))
# switch to train mode
model.train()
end = time.time()
for data_iter, inputs in enumerate(train_loader):
# evaluate in the middle of training
if eval_in_middle > 0 and (data_iter > 0 and data_iter % eval_in_middle) and ek100_loader is not None:
model.eval()
print('=> 0-shot on EK100 in the middle of training')
similarity_matrix = get_similarity_matrix(ek100_loader, model, use_half=args.use_half)
similarity_matrix = (similarity_matrix + 1) / 2
video_id = pd.read_csv("datasets/EK100/epic-kitchens-100-annotations/retrieval_annotations/EPIC_100_retrieval_test.csv").values[:, 0]
text_id = pd.read_csv("datasets/EK100/epic-kitchens-100-annotations/retrieval_annotations/EPIC_100_retrieval_test_sentence.csv").values[:, 0]
indexes = [video_id.tolist().index(elem) for elem in text_id]
similarity_matrix = similarity_matrix[:, indexes]
rel_matrix = pd.read_pickle(
'datasets/EK100/epic-kitchens-100-annotations/retrieval_annotations/relevancy/caption_relevancy_EPIC_100_retrieval_test.pkl'
)
vis_map, txt_map, avg_map = get_mAP(similarity_matrix, rel_matrix)
print('mAP: V->T: {:.3f} T->V: {:.3f} AVG: {:.3f}'.format(vis_map, txt_map, avg_map))
vis_ndcg, txt_ndcg, avg_ndcg = get_nDCG(similarity_matrix, rel_matrix)
print('nDCG: V->T: {:.3f} T->V: {:.3f} AVG: {:.3f}'.format(vis_ndcg, txt_ndcg, avg_ndcg))
best_metric = avg_map
print('=> saving checkpoint')
dist_utils.save_on_master({
'epoch': epoch + data_iter / len(train_loader),
'state_dict': model.state_dict(),
'criterion': criterion.state_dict(),
'optimizer': optimizer.state_dict(),
'scaler': scaler.state_dict(),
'best_acc1': best_metric,
'args': args,
}, False, args.output_dir, is_epoch=True) # save every time (not to conflict the best_metric tracking in the regular validation phrase)
model.train()
if args.metadata_aux is not None:
gt_indicators, inputs = inputs
optim_iter = data_iter // args.update_freq
# measure data loading time
data_time.update(time.time() - end)
# update weight decay and learning rate according to their schedule
it = iters_per_epoch * epoch + optim_iter # global training iteration
for k, param_group in enumerate(optimizer.param_groups):
if lr_schedule is not None:
param_group['lr'] = lr_schedule[it]
inputs = [tensor.cuda(args.gpu, non_blocking=True) for tensor in inputs]
_ = inputs.pop() # loader will a "relevancy" variable which is not needed except ek100_mir
# compute output
with amp.autocast(enabled=not args.disable_amp):
outputs = model(
*inputs,
use_checkpoint=args.use_checkpoint,
norm_embed=args.norm_embed
)
if args.metadata_aux is None:
loss_dict = criterion(outputs)
else:
loss_dict = criterion(outputs, gt_indicators)
loss = loss_dict['loss']
loss /= args.update_freq
if not math.isfinite(loss.item()):
print("Loss is {}, stopping training".format(loss.item()))
sys.exit(1)
scaler.scale(loss).backward()
if (data_iter + 1) % args.update_freq != 0:
continue
if args.clip_grad_value is not None:
scaler.unscale_(optimizer)
if args.clip_grad_type == 'norm':
torch.nn.utils.clip_grad_norm_(
model.parameters(), args.clip_grad_value, norm_type=2.
)
elif args.clip_grad_type == 'value':
torch.nn.utils.clip_grad_value_(model.parameters(), args.clip_grad_value)
else:
assert False, f"Unknown clip mode ({args.clip_grad_type})."
# compute gradient and do SGD step
scaler.step(optimizer)
scaler.update()
model.zero_grad(set_to_none=True)
if hasattr(dist_utils.get_model(model), 'logit_scale'):
# clamp logit scale to [0, 100]
dist_utils.get_model(model).logit_scale.data.clamp_(0, 4.6052)
logit_scale = dist_utils.get_model(model).logit_scale.exp().item()
else:
logit_scale = torch.nan
for k in loss_dict:
metrics[k].update(loss_dict[k].item(), args.batch_size)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
mem.update(torch.cuda.max_memory_allocated() // 1e9)
if optim_iter % args.print_freq == 0:
if dist_utils.is_main_process() and args.wandb:
wandb.log({**{k: v.item() for k, v in loss_dict.items()},
'scaler': scaler.get_scale(), 'logit': logit_scale})
progress.display(optim_iter)
progress.synchronize()
return {**{k: v.avg for k, v in metrics.items()},
'lr': optimizer.param_groups[0]['lr'],
'logit_scale': logit_scale}
def validate(val_loader, model, criterion, args):
batch_time = AverageMeter('Time', ':6.2f')
data_time = AverageMeter('Data', ':6.2f')
mem = AverageMeter('Mem (GB)', ':6.1f')
metric_names = models.get_metric_names(args.model)
iters_per_epoch = len(val_loader) // args.update_freq
metrics = OrderedDict([(name, AverageMeter(name, ':.2e')) for name in metric_names])
progress = ProgressMeter(
iters_per_epoch,
[batch_time, data_time, mem, *metrics.values()],
prefix="Test: "
)
# switch to eval mode
model.eval()
with torch.no_grad():
end = time.time()
for i, inputs in enumerate(val_loader):
# measure data loading time
data_time.update(time.time() - end)
if args.metadata_aux is not None:
gt_indicators, inputs = inputs
inputs = [tensor.cuda(args.gpu, non_blocking=True) for tensor in inputs]
_ = inputs.pop() # loader will a "relevancy" variable which is not needed except ek100_mir
# compute output
outputs = model(
*inputs,
use_checkpoint=args.use_checkpoint,
norm_embed=args.norm_embed
)
if args.metadata_aux is None:
loss_dict = criterion(outputs)
else:
loss_dict = criterion(outputs, gt_indicators)
for k in loss_dict:
metrics[k].update(loss_dict[k].item(), args.batch_size)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
mem.update(torch.cuda.max_memory_allocated() // 1e9)
if i % args.print_freq == 0:
if dist_utils.is_main_process() and args.wandb:
wandb.log({**{k: v.item() for k, v in loss_dict.items()}})
progress.display(i)
progress.synchronize()
return {**{k: v.avg for k, v in metrics.items()}}
if __name__ == '__main__':
parser = argparse.ArgumentParser('LaVid training and evaluation', parents=[get_args_parser()])
args = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
main(args)
|