File size: 11,668 Bytes
39d5658
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.


import argparse
from collections import OrderedDict
import os
import os.path as osp
import pickle
import time

import torch
import torchvision.transforms as transforms
import torchvision.transforms._transforms_video as transforms_video

from lavila.data import datasets
from lavila.data.video_transforms import Permute
from lavila.models import models
from lavila.utils.preprocess import generate_tokenizer
from lavila.utils import distributed as dist_utils
from eval_narrator import decode_one


class IndexedDataset(torch.utils.data.Dataset):
    def __init__(self, dataset):
        self.dataset = dataset

    def __getitem__(self, index):
        return index, self.dataset[index]

    def __len__(self):
        return len(self.dataset)


def get_args_parser():
    parser = argparse.ArgumentParser(description='lavila infer narrator', add_help=False)
    parser.add_argument('--dataset', default='ego4d', type=str, choices=['ego4d'])
    parser.add_argument('--root',
                        default='datasets/Ego4D/video_5min_chunks_288px/',
                        type=str, help='path to dataset root')
    parser.add_argument('--metadata',
                        default='datasets/Ego4D/ego4d_train.pkl',
                        type=str, help='path to metadata file')
    parser.add_argument('--output-dir', default='./', type=str, help='output dir')
    parser.add_argument('--batch-size', default=64, type=int)
    parser.add_argument('--use-half', action='store_true')
    parser.add_argument('--clip-length', default=4, type=int, help='clip length')
    parser.add_argument('--clip-stride', default=16, type=int, help='clip stride')
    parser.add_argument('--resume', default='', type=str, help='path to latest checkpoint')
    parser.add_argument('--caption-sample', default='multinomial_sample',
                        choices=['multinomial_sample', 'beam_sample', 'group_beam_search'])
    parser.add_argument('--caption-top-k', default=None, type=int)
    parser.add_argument('--caption-top-p', default=0.95, type=float)
    parser.add_argument('--caption-num-beams', default=1, type=int)
    parser.add_argument('--caption-num-beam-groups', default=1, type=int)
    parser.add_argument('--caption-temperature', default=0.7, type=float)
    parser.add_argument('--caption-length-penalty', default=1.0, type=float)
    parser.add_argument('--caption-num-return-sequences', default=10, type=int)
    parser.add_argument('--caption-max-len', default=77, type=int)
    parser.add_argument('--caption-early-stop', action='store_true', help='early stopping to save computation')
    # System
    parser.add_argument('--print-freq', default=10, type=int, help='print frequency')
    parser.add_argument('-j', '--workers', default=10, type=int, metavar='N',
                        help='number of data loading workers per process')
    parser.add_argument('--world-size', default=1, type=int,
                        help='number of nodes for distributed training')
    parser.add_argument('--rank', default=0, type=int,
                        help='node rank for distributed training')
    parser.add_argument("--local_rank", type=int, default=0)
    parser.add_argument('--dist-url', default='env://', type=str,
                        help='url used to set up distributed training')
    parser.add_argument('--dist-backend', default='nccl', type=str)
    parser.add_argument('--gpu', default=None, type=int, help='GPU id to use.')
    return parser


def main(args):
    dist_utils.init_distributed_mode(args)
    print(args)

    if args.resume:
        ckpt_path = args.resume
    elif osp.isfile(osp.join(args.output_dir, 'checkpoint_best.pt')):
        ckpt_path = osp.join(args.output_dir, 'checkpoint_best.pt')
    else:
        raise Exception('no checkpoint found')

    ckpt = torch.load(ckpt_path, map_location='cpu')
    state_dict = OrderedDict()
    for k, v in ckpt['state_dict'].items():
        state_dict[k.replace('module.', '')] = v

    # create model
    old_args = ckpt['args']
    print('=> creating model: {}'.format(old_args.model))
    model = getattr(models, old_args.model)(
        text_use_cls_token=old_args.use_cls_token,
        gated_xattn=old_args.gated_xattn,
        timesformer_gated_xattn=old_args.timesformer_gated_xattn,
        num_frames=old_args.clip_length,
        drop_path_rate=0,
    )
    model.cuda()
    model.load_state_dict(state_dict, strict=True)
    print("=> loaded resume checkpoint '{}' (epoch {})".format(args.resume, ckpt['epoch']))

    torch.backends.cudnn.benchmark = True

    # Data loading
    print("=> creating dataset")
    tokenizer = generate_tokenizer(old_args.model)

    crop_size = 224 if '336PX' not in old_args.model else 336
    val_transform = transforms.Compose([
        Permute([3, 0, 1, 2]),  # T H W C -> C T H W
        transforms.Resize(crop_size),
        transforms.CenterCrop(crop_size),
        (transforms_video.NormalizeVideo(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375]) if 'OPENAI' not in old_args.model else
            transforms_video.NormalizeVideo(mean=[108.3272985, 116.7460125, 104.09373615000001], std=[68.5005327, 66.6321579, 70.32316305])),
    ])

    val_dataset = datasets.VideoCaptionDatasetCLIP(
        args.dataset,
        args.root,
        args.metadata,
        transform=val_transform,
        is_training=False,
        tokenizer=tokenizer,
        clip_length=args.clip_length,
        clip_stride=args.clip_stride,
        sparse_sample=False,
        subsample_stride=1,
    )
    val_dataset = IndexedDataset(val_dataset)

    print(len(val_dataset))

    if args.distributed:
        val_sampler = torch.utils.data.distributed.DistributedSampler(val_dataset, shuffle=False)
    else:
        val_sampler = None

    val_loader = torch.utils.data.DataLoader(
        val_dataset,
        batch_size=args.batch_size,
        shuffle=False,
        num_workers=args.workers, pin_memory=True, sampler=val_sampler, drop_last=False
    )
    print('len(val_loader) = {}'.format(len(val_loader)))

    model.eval()
    if args.use_half:
        model.half()

    id_offset = 0
    all_captions_cache = []
    end = time.time()
    with torch.no_grad():
        for data_iter, (indices, inputs) in enumerate(val_loader):
            indices = indices.tolist()
            if data_iter % args.print_freq == 0:
                print("finished {}/{} in {}".format(data_iter, len(val_loader), time.time() - end))
                end = time.time()
            if len(inputs) == 2 or len(inputs) == 3:
                images = inputs[0].cuda(non_blocking=True)
                if args.use_half:
                    images = images.half()

                image_features = dist_utils.get_model(model).encode_image(images)
                if not isinstance(image_features, (list, tuple)):
                    image_tokens = image_features
                else:
                    image_tokens = image_features[1]
                if args.caption_sample == 'multinomial_sample':
                    generated_text_ids, ppls = dist_utils.get_model(model).generate(
                        image_tokens,
                        tokenizer,
                        target=None,
                        max_text_length=args.caption_max_len,
                        top_k=args.caption_top_k,
                        top_p=args.caption_top_p,
                        num_return_sequences=args.caption_num_return_sequences,
                        temperature=args.caption_temperature,
                        early_stopping=args.caption_early_stop,
                    )
                elif args.caption_sample == 'beam_sample':
                    generated_text_ids, ppls = dist_utils.get_model(model).beam_sample(
                        image_tokens,
                        tokenizer,
                        target=None,
                        max_text_length=args.caption_max_len,
                        top_k=args.caption_top_k,
                        top_p=args.caption_top_p,
                        temperature=args.caption_temperature,
                        length_penalty=args.caption_length_penalty,
                        num_beams=args.caption_num_beams,
                        num_return_sequences=args.caption_num_return_sequences,
                    )
                elif args.caption_sample == 'group_beam_search':
                    assert args.caption_num_beam_groups > 1 and args.caption_num_beams % args.caption_num_beam_groups == 0
                    generated_text_ids, ppls = dist_utils.get_model(model).group_beam_search(
                        image_tokens,
                        tokenizer,
                        target=None,
                        max_text_length=args.caption_max_len,
                        top_k=args.caption_top_k,
                        top_p=args.caption_top_p,
                        temperature=args.caption_temperature,
                        length_penalty=args.caption_length_penalty,
                        num_beams=args.caption_num_beams,
                        num_beam_groups=args.caption_num_beam_groups,
                        num_return_sequences=args.caption_num_return_sequences,
                    )
                for j in range(generated_text_ids.shape[0] // args.caption_num_return_sequences):
                    generated_text_str_list = []
                    ppls_list = []
                    for k in range(args.caption_num_return_sequences):
                        jj = j * args.caption_num_return_sequences + k
                        generated_text_str = decode_one(generated_text_ids[jj], tokenizer)
                        generated_text_str_list.append(generated_text_str)
                        ppls_list.append(ppls[jj].item())
                    video_uid, t_start, t_end, _ = val_loader.dataset.dataset.samples[indices[j]]
                    if args.caption_num_return_sequences == 1:
                        all_captions_cache.append((video_uid, t_start, t_end, generated_text_str, ppls[jj].item()))
                    else:
                        all_captions_cache.append((video_uid, t_start, t_end, generated_text_str_list, ppls_list))
                id_offset += generated_text_ids.shape[0]

    pickle.dump(all_captions_cache, open(osp.join(args.output_dir, 'cache.{}.pkl'.format(args.rank)), 'wb'))

    torch.distributed.barrier()
    disorded_list = []
    total_num = 0
    if args.rank == 0:
        for i in range(args.world_size):
            print('=> reading {}'.format(osp.join(args.output_dir, f'cache.{i}.pkl')))
            sublist = pickle.load(open(osp.join(args.output_dir, f'cache.{i}.pkl'), 'rb'))
            disorded_list.append(sublist)
            total_num += len(sublist)
        ordered_list = []
        for i in range(total_num):
            ordered_list.append(disorded_list[i % args.world_size][i // args.world_size])
        print(f"{len(val_dataset)}/{len(ordered_list)}")
        ordered_list = ordered_list[:len(val_dataset)]
        pickle.dump(ordered_list, open(osp.join(args.output_dir, 'total.pkl'), 'wb'))
        for i in range(args.world_size):
            print('=> deleting {}'.format(osp.join(args.output_dir, f'cache.{i}.pkl')))
            os.remove(osp.join(args.output_dir, f'cache.{i}.pkl'))


if __name__ == '__main__':
    parser = argparse.ArgumentParser('lavila infer narrator', parents=[get_args_parser()])
    args = parser.parse_args()
    main(args)