Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
import pandas as pd
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
|
6 |
+
# Use a pipeline as a high-level helper
|
7 |
+
from transformers import pipeline
|
8 |
+
|
9 |
+
#analyzer = pipeline("text-classification", model="distilbert/distilbert-base-uncased-finetuned-sst-2-english")
|
10 |
+
analyzer = pipeline("text-classification", model="lxyuan/distilbert-base-multilingual-cased-sentiments-student")
|
11 |
+
|
12 |
+
def sentiment_analyzer(review):
|
13 |
+
sentiment = analyzer(review)
|
14 |
+
return sentiment[0]['label']
|
15 |
+
|
16 |
+
def sentiment_bar_chart(df):
|
17 |
+
sentiment_counts = df['Sentiment'].value_counts()
|
18 |
+
|
19 |
+
# Create a bar chart
|
20 |
+
fig, ax = plt.subplots()
|
21 |
+
sentiment_counts.plot(kind='pie', ax=ax, autopct='%1.1f%%', color=['green', 'red'])
|
22 |
+
ax.set_title('Reviews')
|
23 |
+
ax.set_xlabel('Stimmung')
|
24 |
+
ax.set_ylabel('Anzahl')
|
25 |
+
# ax.set_xticklabels(['Positive', 'Negative'], rotation=0)
|
26 |
+
|
27 |
+
# Return the figure object
|
28 |
+
return fig
|
29 |
+
|
30 |
+
|
31 |
+
def read_reviews_and_analyze_sentiment(file_object):
|
32 |
+
# Load the Excel file into a DataFrame
|
33 |
+
df = pd.read_excel(file_object)
|
34 |
+
print(df.columns)
|
35 |
+
# Check if 'Review' column is in the DataFrame
|
36 |
+
#for col in df.columns:
|
37 |
+
#print(f"col={col}")
|
38 |
+
if 'Reviews' not in df.columns:
|
39 |
+
raise ValueError("Die Excel-Datei muss eine Spalte 'Reviews' enthalten.")
|
40 |
+
|
41 |
+
# Apply the get_sentiment function to each review in the DataFrame
|
42 |
+
df['Sentiment'] = df['Reviews'].apply(sentiment_analyzer)
|
43 |
+
chart_object = sentiment_bar_chart(df)
|
44 |
+
return chart_object, df
|
45 |
+
|
46 |
+
demo = gr.Interface(fn=read_reviews_and_analyze_sentiment,
|
47 |
+
inputs=[gr.File(file_types=["xlsx"], label="Laden Sie Ihre xls-Review-Datei hoch")],
|
48 |
+
outputs=[ gr.Plot(label="Stimmungsanalyse"), gr.Dataframe(label="Stimmungen")],
|
49 |
+
title="Project 3: Stimmung-Analysator",
|
50 |
+
description="DIESE ANWENDUNG WIRD VERWENDET, UM DIE STIMMUNG AUF DER GRUNDLAGE DER HOCHGELADENEN DATEI ZU ANALYSIEREN.",
|
51 |
+
allow_flagging="never",
|
52 |
+
submit_btn="Übermitteln",
|
53 |
+
clear_btn="Bereinigen",)
|
54 |
+
demo.launch()
|