File size: 7,731 Bytes
eb1bccb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/Users/nathanluskey/opt/anaconda3/envs/ml_env/lib/python3.10/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
      "  from .autonotebook import tqdm as notebook_tqdm\n"
     ]
    }
   ],
   "source": [
    "from transformers import DistilBertTokenizer, DistilBertModel, \\\n",
    "                         BertTokenizer, BertModel, \\\n",
    "                         RobertaTokenizer, RobertaModel, \\\n",
    "                         AutoTokenizer, AutoModelForMaskedLM\n",
    "import gradio as gr\n",
    "import pandas as pd\n",
    "import numpy as np\n",
    "import torch\n",
    "from typing import List, Tuple\n",
    "from sklearn.cluster import KMeans"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "# global variables\n",
    "encoder_options = [\n",
    "    'distilbert-base-uncased',\n",
    "    'bert-base-uncased',\n",
    "    'bert-base-cased'\n",
    "    'roberta-base',\n",
    "    'xlm-roberta-base',\n",
    "    ]\n",
    "\n",
    "current_encoder = encoder_options[0]\n",
    "tokenizer = None\n",
    "model = None\n",
    "\n",
    "genres = pd.read_csv(\"./all_genres.csv\")\n",
    "genres = genres[\"genre\"].to_list()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertModel: ['vocab_projector.bias', 'vocab_layer_norm.weight', 'vocab_transform.weight', 'vocab_layer_norm.bias', 'vocab_transform.bias', 'vocab_projector.weight']\n",
      "- This IS expected if you are initializing DistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
      "- This IS NOT expected if you are initializing DistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n"
     ]
    }
   ],
   "source": [
    "if current_encoder == 'distilbert-base-uncased':\n",
    "    tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')\n",
    "    model = DistilBertModel.from_pretrained('distilbert-base-uncased')\n",
    "elif current_encoder == 'bert-base-uncased':\n",
    "    tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')\n",
    "    model = BertModel.from_pretrained('bert-base-uncased')\n",
    "elif current_encoder == 'bert-base-cased':\n",
    "    tokenizer = BertTokenizer.from_pretrained('bert-base-cased')\n",
    "    model = BertModel.from_pretrained('bert-base-cased')\n",
    "elif current_encoder == 'roberta-base':\n",
    "    tokenizer = RobertaTokenizer.from_pretrained('roberta-base')\n",
    "    model = RobertaModel.from_pretrained('roberta-base')\n",
    "elif current_encoder == 'xlm-roberta-base':\n",
    "    tokenizer = AutoTokenizer.from_pretrained('xlm-roberta-base')\n",
    "    model = AutoModelForMaskedLM.from_pretrained('xlm-roberta-base')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "def embed_string() -> np.ndarray:\n",
    "    output = []\n",
    "    for text in genres:\n",
    "        encoded_input = tokenizer(text, return_tensors='pt')\n",
    "        # forward pass\n",
    "        new_output = model(**encoded_input)\n",
    "        to_append = new_output.last_hidden_state\n",
    "        to_append = to_append[:, -1, :] #Take the last element\n",
    "        to_append = to_append.flatten().detach().cpu().numpy()\n",
    "        output.append(to_append)\n",
    "    np_output = np.zeros((len(output), output[0].shape[0]))\n",
    "    for i, vector in enumerate(output):\n",
    "        np_output[i, :] = vector\n",
    "    return np_output"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "def gen_clusters(input_strs:np.ndarray, num_clusters:int) -> Tuple[KMeans, np.ndarray, float]:\n",
    "    clustering_algo = KMeans(n_clusters=num_clusters)\n",
    "    predicted_labels = clustering_algo.fit_predict(input_strs)\n",
    "\n",
    "    cluster_error = 0.0\n",
    "    for i, predicted_label in enumerate(predicted_labels):\n",
    "        predicted_center = clustering_algo.cluster_centers_[predicted_label, :]\n",
    "        new_error = np.sqrt(np.sum(np.square(predicted_center, input_strs[i])))\n",
    "        cluster_error += new_error\n",
    "\n",
    "    return clustering_algo, predicted_labels, cluster_error\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [],
   "source": [
    "def view_clusters(predicted_clusters:np.ndarray) -> pd.DataFrame:\n",
    "    mappings = dict()\n",
    "    for predicted_cluster, movie in zip(predicted_clusters, genres):\n",
    "        curr_mapping = mappings.get(predicted_cluster, [])\n",
    "        curr_mapping.append(movie)\n",
    "        mappings[predicted_cluster] = curr_mapping\n",
    "\n",
    "    output_df = pd.DataFrame()\n",
    "    max_len = max([len(x) for x in mappings.values()])\n",
    "    max_cluster = max(predicted_clusters)\n",
    "\n",
    "    for i in range(max_cluster + 1):\n",
    "        new_column_name = f\"cluster_{i}\"\n",
    "        new_column_data = mappings[i]\n",
    "        new_column_data.extend([''] * (max_len - len(new_column_data)))\n",
    "        output_df[new_column_name] = new_column_data\n",
    "\n",
    "    return output_df"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [],
   "source": [
    "def add_new_genre(clustering_algo:KMeans, new_genre:str, recompute:bool = False) -> pd.DataFrame:\n",
    "    global genres\n",
    "    genres.append(new_genre)\n",
    "    embedded_genres = embed_string()\n",
    "    if recompute:\n",
    "        cluster_algo, cluster_centers, error = gen_clusters(embedded_genres, 5)\n",
    "    else:\n",
    "       cluster_centers = cluster_algo.predict(embedded_genres)\n",
    "    \n",
    "    ouput_df = view_clusters(cluster_centers)\n",
    "    return ouput_df\n",
    "    "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [],
   "source": [
    "embedded_genres = embed_string()\n",
    "clustering_algo, predicted_labels, cluster_error = gen_clusters(embedded_genres, 5)\n",
    "output_df = view_clusters(predicted_labels)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3.10.6 ('ml_env')",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.6"
  },
  "orig_nbformat": 4,
  "vscode": {
   "interpreter": {
    "hash": "2434bee09bcd67f653a1f2d2df1f4f18cabf9d6c39b42950acaa6ef605d590bc"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}