|
|
|
|
|
|
|
|
|
|
|
|
|
import spaces |
|
import os |
|
import sys |
|
import os.path as path |
|
import torch |
|
import tempfile |
|
import gradio |
|
|
|
HERE_PATH = path.normpath(path.dirname(__file__)) |
|
MASt3R_REPO_PATH = path.normpath(path.join(HERE_PATH, './mast3r')) |
|
sys.path.insert(0, MASt3R_REPO_PATH) |
|
|
|
from mast3r.demo import get_reconstructed_scene, get_3D_model_from_scene, set_scenegraph_options |
|
from mast3r.model import AsymmetricMASt3R |
|
from mast3r.utils.misc import hash_md5 |
|
|
|
import matplotlib.pyplot as pl |
|
pl.ion() |
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
batch_size = 1 |
|
|
|
weights_path = "naver/" + 'MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric' |
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
model = AsymmetricMASt3R.from_pretrained(weights_path).to(device) |
|
chkpt_tag = hash_md5(weights_path) |
|
|
|
tmpdirname = "tmp/gradio" |
|
image_size = 512 |
|
silent = True |
|
gradio_delete_cache = 7200 |
|
|
|
|
|
@spaces.GPU() |
|
def local_get_reconstructed_scene(current_scene_state, |
|
filelist, optim_level, lr1, niter1, lr2, niter2, min_conf_thr, matching_conf_thr, |
|
as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, scenegraph_type, winsize, |
|
win_cyclic, refid, TSDF_thresh, shared_intrinsics, **kw): |
|
return get_reconstructed_scene(tmpdirname, gradio_delete_cache, model, device, silent, image_size, current_scene_state, |
|
filelist, optim_level, lr1, niter1, lr2, niter2, min_conf_thr, matching_conf_thr, |
|
as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, scenegraph_type, winsize, |
|
win_cyclic, refid, TSDF_thresh, shared_intrinsics, **kw) |
|
|
|
|
|
@spaces.GPU() |
|
def local_get_3D_model_from_scene(scene_state, min_conf_thr=2, as_pointcloud=False, mask_sky=False, |
|
clean_depth=False, transparent_cams=False, cam_size=0.05, TSDF_thresh=0): |
|
return get_3D_model_from_scene(silent, scene_state, min_conf_thr, as_pointcloud, mask_sky, |
|
clean_depth, transparent_cams, cam_size, TSDF_thresh) |
|
|
|
|
|
recon_fun = local_get_reconstructed_scene |
|
model_from_scene_fun = local_get_3D_model_from_scene |
|
|
|
|
|
def get_context(delete_cache): |
|
css = """.gradio-container {margin: 0 !important; min-width: 100%};""" |
|
title = "MASt3R Demo" |
|
if delete_cache: |
|
return gradio.Blocks(css=css, title=title, delete_cache=(delete_cache, delete_cache)) |
|
else: |
|
return gradio.Blocks(css=css, title="MASt3R Demo") |
|
|
|
|
|
with get_context(gradio_delete_cache) as demo: |
|
|
|
scene = gradio.State(None) |
|
gradio.HTML('<h2 style="text-align: center;">MASt3R Demo</h2>') |
|
with gradio.Column(): |
|
inputfiles = gradio.File(file_count="multiple") |
|
with gradio.Row(): |
|
with gradio.Column(): |
|
with gradio.Row(): |
|
lr1 = gradio.Slider(label="Coarse LR", value=0.07, minimum=0.01, maximum=0.2, step=0.01) |
|
niter1 = gradio.Number(value=500, precision=0, minimum=0, maximum=10_000, |
|
label="num_iterations", info="For coarse alignment!") |
|
lr2 = gradio.Slider(label="Fine LR", value=0.014, minimum=0.005, maximum=0.05, step=0.001) |
|
niter2 = gradio.Number(value=200, precision=0, minimum=0, maximum=100_000, |
|
label="num_iterations", info="For refinement!") |
|
optim_level = gradio.Dropdown(["coarse", "refine", "refine+depth"], |
|
value='refine', label="OptLevel", |
|
info="Optimization level") |
|
with gradio.Row(): |
|
matching_conf_thr = gradio.Slider(label="Matching Confidence Thr", value=5., |
|
minimum=0., maximum=30., step=0.1, |
|
info="Before Fallback to Regr3D!") |
|
shared_intrinsics = gradio.Checkbox(value=False, label="Shared intrinsics", |
|
info="Only optimize one set of intrinsics for all views") |
|
scenegraph_type = gradio.Dropdown([("complete: all possible image pairs", "complete"), |
|
("swin: sliding window", "swin"), |
|
("logwin: sliding window with long range", "logwin"), |
|
("oneref: match one image with all", "oneref")], |
|
value='complete', label="Scenegraph", |
|
info="Define how to make pairs", |
|
interactive=True) |
|
with gradio.Column(visible=False) as win_col: |
|
winsize = gradio.Slider(label="Scene Graph: Window Size", value=1, |
|
minimum=1, maximum=1, step=1) |
|
win_cyclic = gradio.Checkbox(value=False, label="Cyclic sequence") |
|
refid = gradio.Slider(label="Scene Graph: Id", value=0, |
|
minimum=0, maximum=0, step=1, visible=False) |
|
run_btn = gradio.Button("Run") |
|
|
|
with gradio.Row(): |
|
|
|
min_conf_thr = gradio.Slider(label="min_conf_thr", value=1.5, minimum=0.0, maximum=10, step=0.1) |
|
|
|
cam_size = gradio.Slider(label="cam_size", value=0.2, minimum=0.001, maximum=1.0, step=0.001) |
|
TSDF_thresh = gradio.Slider(label="TSDF Threshold", value=0., minimum=0., maximum=1., step=0.01) |
|
with gradio.Row(): |
|
as_pointcloud = gradio.Checkbox(value=True, label="As pointcloud") |
|
|
|
mask_sky = gradio.Checkbox(value=False, label="Mask sky") |
|
clean_depth = gradio.Checkbox(value=True, label="Clean-up depthmaps") |
|
transparent_cams = gradio.Checkbox(value=False, label="Transparent cameras") |
|
|
|
outmodel = gradio.Model3D() |
|
|
|
|
|
scenegraph_type.change(set_scenegraph_options, |
|
inputs=[inputfiles, win_cyclic, refid, scenegraph_type], |
|
outputs=[win_col, winsize, win_cyclic, refid]) |
|
inputfiles.change(set_scenegraph_options, |
|
inputs=[inputfiles, win_cyclic, refid, scenegraph_type], |
|
outputs=[win_col, winsize, win_cyclic, refid]) |
|
win_cyclic.change(set_scenegraph_options, |
|
inputs=[inputfiles, win_cyclic, refid, scenegraph_type], |
|
outputs=[win_col, winsize, win_cyclic, refid]) |
|
run_btn.click(fn=recon_fun, |
|
inputs=[scene, inputfiles, optim_level, lr1, niter1, lr2, niter2, min_conf_thr, matching_conf_thr, |
|
as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, |
|
scenegraph_type, winsize, win_cyclic, refid, TSDF_thresh, shared_intrinsics], |
|
outputs=[scene, outmodel]) |
|
min_conf_thr.release(fn=model_from_scene_fun, |
|
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, |
|
clean_depth, transparent_cams, cam_size, TSDF_thresh], |
|
outputs=outmodel) |
|
cam_size.change(fn=model_from_scene_fun, |
|
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, |
|
clean_depth, transparent_cams, cam_size, TSDF_thresh], |
|
outputs=outmodel) |
|
TSDF_thresh.change(fn=model_from_scene_fun, |
|
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, |
|
clean_depth, transparent_cams, cam_size, TSDF_thresh], |
|
outputs=outmodel) |
|
as_pointcloud.change(fn=model_from_scene_fun, |
|
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, |
|
clean_depth, transparent_cams, cam_size, TSDF_thresh], |
|
outputs=outmodel) |
|
mask_sky.change(fn=model_from_scene_fun, |
|
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, |
|
clean_depth, transparent_cams, cam_size, TSDF_thresh], |
|
outputs=outmodel) |
|
clean_depth.change(fn=model_from_scene_fun, |
|
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, |
|
clean_depth, transparent_cams, cam_size, TSDF_thresh], |
|
outputs=outmodel) |
|
transparent_cams.change(model_from_scene_fun, |
|
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky, |
|
clean_depth, transparent_cams, cam_size, TSDF_thresh], |
|
outputs=outmodel) |
|
demo.launch(share=None, server_name=None, server_port=None) |
|
|