MASt3R / app.py
yocabon's picture
try without partial
7494687
raw
history blame
9.79 kB
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# masst3r demo
# --------------------------------------------------------
import spaces
import os
import sys
import os.path as path
import torch
import tempfile
import gradio
HERE_PATH = path.normpath(path.dirname(__file__)) # noqa
MASt3R_REPO_PATH = path.normpath(path.join(HERE_PATH, './mast3r')) # noqa
sys.path.insert(0, MASt3R_REPO_PATH) # noqa
from mast3r.demo import get_reconstructed_scene, get_3D_model_from_scene, set_scenegraph_options
from mast3r.model import AsymmetricMASt3R
from mast3r.utils.misc import hash_md5
import matplotlib.pyplot as pl
pl.ion()
# for gpu >= Ampere and pytorch >= 1.12
torch.backends.cuda.matmul.allow_tf32 = True
batch_size = 1
weights_path = "naver/" + 'MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric'
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = AsymmetricMASt3R.from_pretrained(weights_path).to(device)
chkpt_tag = hash_md5(weights_path)
tmpdirname = "tmp/gradio"
image_size = 512
silent = True
gradio_delete_cache = 7200
@spaces.GPU()
def local_get_reconstructed_scene(current_scene_state,
filelist, optim_level, lr1, niter1, lr2, niter2, min_conf_thr, matching_conf_thr,
as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, scenegraph_type, winsize,
win_cyclic, refid, TSDF_thresh, shared_intrinsics, **kw):
return get_reconstructed_scene(tmpdirname, gradio_delete_cache, model, device, silent, image_size, current_scene_state,
filelist, optim_level, lr1, niter1, lr2, niter2, min_conf_thr, matching_conf_thr,
as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, scenegraph_type, winsize,
win_cyclic, refid, TSDF_thresh, shared_intrinsics, **kw)
@spaces.GPU()
def local_get_3D_model_from_scene(scene_state, min_conf_thr=2, as_pointcloud=False, mask_sky=False,
clean_depth=False, transparent_cams=False, cam_size=0.05, TSDF_thresh=0):
return get_3D_model_from_scene(silent, scene_state, min_conf_thr, as_pointcloud, mask_sky,
clean_depth, transparent_cams, cam_size, TSDF_thresh)
recon_fun = local_get_reconstructed_scene
model_from_scene_fun = local_get_3D_model_from_scene
def get_context(delete_cache):
css = """.gradio-container {margin: 0 !important; min-width: 100%};"""
title = "MASt3R Demo"
if delete_cache:
return gradio.Blocks(css=css, title=title, delete_cache=(delete_cache, delete_cache))
else:
return gradio.Blocks(css=css, title="MASt3R Demo") # for compatibility with older versions
with get_context(gradio_delete_cache) as demo:
# scene state is save so that you can change conf_thr, cam_size... without rerunning the inference
scene = gradio.State(None)
gradio.HTML('<h2 style="text-align: center;">MASt3R Demo</h2>')
with gradio.Column():
inputfiles = gradio.File(file_count="multiple")
with gradio.Row():
with gradio.Column():
with gradio.Row():
lr1 = gradio.Slider(label="Coarse LR", value=0.07, minimum=0.01, maximum=0.2, step=0.01)
niter1 = gradio.Number(value=500, precision=0, minimum=0, maximum=10_000,
label="num_iterations", info="For coarse alignment!")
lr2 = gradio.Slider(label="Fine LR", value=0.014, minimum=0.005, maximum=0.05, step=0.001)
niter2 = gradio.Number(value=200, precision=0, minimum=0, maximum=100_000,
label="num_iterations", info="For refinement!")
optim_level = gradio.Dropdown(["coarse", "refine", "refine+depth"],
value='refine', label="OptLevel",
info="Optimization level")
with gradio.Row():
matching_conf_thr = gradio.Slider(label="Matching Confidence Thr", value=5.,
minimum=0., maximum=30., step=0.1,
info="Before Fallback to Regr3D!")
shared_intrinsics = gradio.Checkbox(value=False, label="Shared intrinsics",
info="Only optimize one set of intrinsics for all views")
scenegraph_type = gradio.Dropdown([("complete: all possible image pairs", "complete"),
("swin: sliding window", "swin"),
("logwin: sliding window with long range", "logwin"),
("oneref: match one image with all", "oneref")],
value='complete', label="Scenegraph",
info="Define how to make pairs",
interactive=True)
with gradio.Column(visible=False) as win_col:
winsize = gradio.Slider(label="Scene Graph: Window Size", value=1,
minimum=1, maximum=1, step=1)
win_cyclic = gradio.Checkbox(value=False, label="Cyclic sequence")
refid = gradio.Slider(label="Scene Graph: Id", value=0,
minimum=0, maximum=0, step=1, visible=False)
run_btn = gradio.Button("Run")
with gradio.Row():
# adjust the confidence threshold
min_conf_thr = gradio.Slider(label="min_conf_thr", value=1.5, minimum=0.0, maximum=10, step=0.1)
# adjust the camera size in the output pointcloud
cam_size = gradio.Slider(label="cam_size", value=0.2, minimum=0.001, maximum=1.0, step=0.001)
TSDF_thresh = gradio.Slider(label="TSDF Threshold", value=0., minimum=0., maximum=1., step=0.01)
with gradio.Row():
as_pointcloud = gradio.Checkbox(value=True, label="As pointcloud")
# two post process implemented
mask_sky = gradio.Checkbox(value=False, label="Mask sky")
clean_depth = gradio.Checkbox(value=True, label="Clean-up depthmaps")
transparent_cams = gradio.Checkbox(value=False, label="Transparent cameras")
outmodel = gradio.Model3D()
# events
scenegraph_type.change(set_scenegraph_options,
inputs=[inputfiles, win_cyclic, refid, scenegraph_type],
outputs=[win_col, winsize, win_cyclic, refid])
inputfiles.change(set_scenegraph_options,
inputs=[inputfiles, win_cyclic, refid, scenegraph_type],
outputs=[win_col, winsize, win_cyclic, refid])
win_cyclic.change(set_scenegraph_options,
inputs=[inputfiles, win_cyclic, refid, scenegraph_type],
outputs=[win_col, winsize, win_cyclic, refid])
run_btn.click(fn=recon_fun,
inputs=[scene, inputfiles, optim_level, lr1, niter1, lr2, niter2, min_conf_thr, matching_conf_thr,
as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size,
scenegraph_type, winsize, win_cyclic, refid, TSDF_thresh, shared_intrinsics],
outputs=[scene, outmodel])
min_conf_thr.release(fn=model_from_scene_fun,
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky,
clean_depth, transparent_cams, cam_size, TSDF_thresh],
outputs=outmodel)
cam_size.change(fn=model_from_scene_fun,
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky,
clean_depth, transparent_cams, cam_size, TSDF_thresh],
outputs=outmodel)
TSDF_thresh.change(fn=model_from_scene_fun,
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky,
clean_depth, transparent_cams, cam_size, TSDF_thresh],
outputs=outmodel)
as_pointcloud.change(fn=model_from_scene_fun,
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky,
clean_depth, transparent_cams, cam_size, TSDF_thresh],
outputs=outmodel)
mask_sky.change(fn=model_from_scene_fun,
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky,
clean_depth, transparent_cams, cam_size, TSDF_thresh],
outputs=outmodel)
clean_depth.change(fn=model_from_scene_fun,
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky,
clean_depth, transparent_cams, cam_size, TSDF_thresh],
outputs=outmodel)
transparent_cams.change(model_from_scene_fun,
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky,
clean_depth, transparent_cams, cam_size, TSDF_thresh],
outputs=outmodel)
demo.launch(share=None, server_name=None, server_port=None)