File size: 7,922 Bytes
bb3ea39
 
dd504c0
880da41
dd504c0
5dfb000
 
aa5e40b
 
402b433
880da41
402b433
 
 
880da41
f4b82b2
9651aac
e7c9542
 
402b433
 
f4b82b2
c9dadbf
f4b82b2
351ead9
 
22a02d6
f4b82b2
 
b3806d2
 
cb6bc7f
 
 
 
 
f4b82b2
b3806d2
cb6bc7f
1d018e4
ce415a7
1d018e4
5dfb000
092e211
 
 
0f68393
092e211
9595159
5dfb000
ea2b2ef
 
 
f1b5b7f
ea2b2ef
 
f1b5b7f
a15c1b9
ea2b2ef
 
 
 
 
 
 
 
 
 
 
 
 
9651aac
b2bf1e7
 
 
 
 
c9dadbf
9595159
 
c9dadbf
411e4cb
 
 
 
 
f1b5b7f
 
c1911e8
b2bf1e7
9595159
b2bf1e7
b3806d2
0cb19e3
b3806d2
5dfb000
b489890
 
f4b82b2
f981819
 
f4b82b2
c9dadbf
 
092e211
 
 
 
 
 
 
 
 
ea2b2ef
c1911e8
 
ea2b2ef
402b433
c1911e8
9595159
cb347cf
9fec9a2
c1911e8
9fec9a2
c1911e8
 
9595159
cb3d625
 
 
 
 
c1911e8
a809352
 
402b433
7c408ba
 
402b433
 
 
 
 
 
 
 
 
 
dd504c0
402b433
 
722b0aa
402b433
7022373
402b433
 
3ea46fa
402b433
 
 
dca7dd8
402b433
7022373
402b433
 
8222092
402b433
 
f4b82b2
0f77bb9
 
3d3c7f5
a0c42c4
 
 
0f77bb9
 
3d3c7f5
a0c42c4
0f77bb9
cc9878d
 
8222092
8ff5253
cb347cf
9180d7e
 
 
8ff5253
2566e5b
 
8ff5253
1a2db09
 
 
 
274f0f4
1a2db09
 
 
 
 
2566e5b
 
43f0015
411e4cb
7f2fdd5
411e4cb
0cb19e3
36eb9c8
0f77bb9
06125bf
 
cc9878d
1a2db09
0f77bb9
2134c75
1a2db09
 
0f77bb9
707ee9f
2639fe5
 
53874e7
c91b02f
700c051
1a2db09
2134c75
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import gradio as gr

import cv2

import torch
import torch.utils.data as data
from torchvision import transforms
from torch import nn
import torch.nn.functional as F

import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib import colors
from mpl_toolkits.axes_grid1 import ImageGrid

import fire_network

import numpy as np

from PIL import Image

# Possible Scales for multiscale inference
scales = [2.0, 1.414, 1.0, 0.707, 0.5, 0.353, 0.25] 

device = 'cpu'

# Load nets
state = torch.load('fire.pth', map_location='cpu')
state['net_params']['pretrained'] = None # no need for imagenet pretrained model
net_sfm = fire_network.init_network(**state['net_params']).to(device)
net_sfm.load_state_dict(state['state_dict'])
dim_red_params_dict = {}
for name, param in net_sfm.named_parameters():
    if 'dim_reduction' in name:
        dim_red_params_dict[name] = param


state2 = torch.load('fire_imagenet.pth', map_location='cpu')
state2['net_params'] = state['net_params']
state2['state_dict'] = dict(state2['state_dict'], **dim_red_params_dict);
net_imagenet = fire_network.init_network(**state['net_params']).to(device)
net_imagenet.load_state_dict(state2['state_dict'], strict=False)

transform = transforms.Compose([
        transforms.Resize(1024),
        transforms.ToTensor(), 
        transforms.Normalize(**dict(zip(["mean", "std"], net_sfm.runtime['mean_std'])))
        ])


def match(query_feat, pos_feat, LoweRatioTh=0.9):
    # first perform reciprocal nn
    dist = torch.cdist(query_feat, pos_feat)
    # print('dist.size',dist.size())
    best1 = torch.argmin(dist, dim=1)
    best2 = torch.argmin(dist, dim=0)
    # print('best2.size',best2.size())
    arange = torch.arange(best2.size(0))
    reciprocal = best1[best2]==arange
    # check Lowe ratio test
    dist2 = dist.clone()
    dist2[best2,arange] = float('Inf')
    dist2_second2 = torch.argmin(dist2, dim=0)
    ratio1to2 = dist[best2,arange] / dist2_second2
    valid = torch.logical_and(reciprocal, ratio1to2<=LoweRatioTh)
    pindices = torch.where(valid)[0]
    qindices = best2[pindices]
    # keep only the ones with same indices 
    valid = pindices==qindices
    return pindices[valid]
    

def clear_figures():
    plt.figure().clear()
    plt.close()
    plt.cla()
    plt.clf()




def generate_matching_superfeatures(
        im1, im2, 
        Imagenet_model=False, 
        scale_id=6, threshold=50, 
        random_mode=False, sf_ids=''): #, only_matching=True):
    # print('im1:', im1.size)
    # print('im2:', im2.size)

    clear_figures()
    col = plt.get_cmap('tab10')

    net = net_sfm
    if Imagenet_model:
        net = net_imagenet

    im1_tensor = transform(im1).unsqueeze(0)
    im2_tensor = transform(im2).unsqueeze(0)

    im1_cv = np.array(im1)[:, :, ::-1].copy() 
    im2_cv = np.array(im2)[:, :, ::-1].copy() 

    # extract features
    with torch.no_grad():
        output1 = net.get_superfeatures(im1_tensor.to(device), scales=[scales[scale_id]])
        feats1 = output1[0][0]
        attns1 = output1[1][0]
        strenghts1 = output1[2][0]

        output2 = net.get_superfeatures(im2_tensor.to(device), scales=[scales[scale_id]])
        feats2 = output2[0][0]
        attns2 = output2[1][0]
        strenghts2 = output2[2][0]

        feats1n = F.normalize(torch.t(torch.squeeze(feats1)), dim=1)
        feats2n = F.normalize(torch.t(torch.squeeze(feats2)), dim=1)
        ind_match = match(feats1n, feats2n)
    
    # which sf 
    sf_idx_ = []
    n_sf_ids = 10
    if random_mode or sf_ids == '':
        sf_idx_ = np.random.randint(256, size=n_sf_ids)
    else:
        sf_idx_ = map(int, sf_ids.strip().split(','))
        
    # only_matching:
    if random_mode:
        sf_idx_ = [int(jj) for jj in ind_match[np.random.randint(len(list(ind_match)), size=n_sf_ids)].numpy()]
        sf_idx_ = list( dict.fromkeys(sf_idx_) )
    else:
        sf_idx_ = [i for i in sf_idx_ if i in list(ind_match)]

    n_sf_ids = len(sf_idx_)

    # Store all binary SF att maps to show them all at once in the end
    all_att_bin1 = []
    all_att_bin2 = []
    for n, i in enumerate(sf_idx_):
        att_heat = np.array(attns1[0,i,:,:].numpy(), dtype=np.float32)
        att_heat = np.uint8(att_heat / np.max(att_heat[:]) * 255.0)
        att_heat_bin  = np.where(att_heat>threshold, 255, 0)
        all_att_bin1.append(att_heat_bin)

        att_heat = np.array(attns2[0,i,:,:].numpy(), dtype=np.float32)
        att_heat = np.uint8(att_heat / np.max(att_heat[:]) * 255.0)
        att_heat_bin  = np.where(att_heat>threshold, 255, 0)
        all_att_bin2.append(att_heat_bin)

    
    fin_img = []
    img1rsz = np.copy(im1_cv)
    for j, att in enumerate(all_att_bin1):
        att = cv2.resize(att, im1.size, interpolation=cv2.INTER_NEAREST)
        mask2d = zip(*np.where(att==255))
        for m,n in mask2d:
            col_ = col.colors[j]
            col_ = 255*np.array(colors.to_rgba(col_))[:3]
            img1rsz[m,n, :] = col_[::-1]   
            
    img2rsz = np.copy(im2_cv)
    for j, att in enumerate(all_att_bin2):
        att = cv2.resize(att, im2.size, interpolation=cv2.INTER_NEAREST)
        mask2d = zip(*np.where(att==255))
        for m,n in mask2d:
            col_ = col.colors[j]
            col_ = 255*np.array(colors.to_rgba(col_))[:3]
            img2rsz[m,n, :] = col_[::-1]   

    fig1 = plt.figure(1)
    plt.imshow(cv2.cvtColor(img1rsz, cv2.COLOR_BGR2RGB))
    ax1 = plt.gca()
    ax1.axis('off')
    plt.tight_layout()    
    
    fig2 = plt.figure(2)
    plt.imshow(cv2.cvtColor(img2rsz, cv2.COLOR_BGR2RGB))
    ax2 = plt.gca()
    ax2.axis('off')
    plt.tight_layout()    
    
    f = lambda m,c: plt.plot([],[],marker=m, color=c, ls="none")[0]
    handles = [f("s", col.colors[i]) for i in range(n_sf_ids)]
    fig_leg = plt.figure(3)
    legend = plt.legend(handles, sf_idx_, framealpha=1, frameon=False, facecolor='w',fontsize=25, loc="center")
    ax3 = plt.gca()
    ax3.axis('off')
    plt.tight_layout()    
    
    im1 = None
    im2 = None
    return fig1, fig2, fig_leg


# GRADIO APP
title = "Visualizing Super-features"
description = "This is a visualization demo for the ICLR 2022 paper <b><a href='https://github.com/naver/fire' target='_blank'>Learning Super-Features for Image Retrieval</a></p></b>" 
article = "<p style='text-align: center'><a href='https://github.com/naver/fire' target='_blank'>Original Github Repo</a></p>"

iface = gr.Interface(
    fn=generate_matching_superfeatures,
    inputs=[
       gr.inputs.Image(shape=(1024, 1024), type="pil", label="First Image"),
       gr.inputs.Image(shape=(1024, 1024), type="pil", label="Second Image"),
        gr.inputs.Checkbox(default=False, label="ImageNet Model (Default: SfM-120k)"),
        gr.inputs.Slider(minimum=0, maximum=6, step=1, default=4, label="Scale"),
        gr.inputs.Slider(minimum=0, maximum=255, step=25, default=150, label="Binarization Threshold"),
        gr.inputs.Checkbox(default=True, label="Show random (matching) SFs"),
        gr.inputs.Textbox(lines=1, default="", label="...or show specific SF IDs:", optional=True),
        ],
    outputs=[
        gr.outputs.Image(type="plot", label="First Image SFs"),
        gr.outputs.Image(type="plot", label="Second Image SFs"),
        gr.outputs.Image(type="plot", label="SF legend")],
    title=title,
    theme='peach',
    layout="horizontal",
    description=description,
    article=article,
    examples=[
        ["chateau_1.png", "chateau_2.png", False, 3, 150, False, '170,15,25,63,193,125,92,214,107'],
        ["areopoli1.jpeg", "areopoli2.jpeg", False, 4, 150, False, '205,2,163,130'],
        ["jaipur1.jpeg", "jaipur2.jpeg", False, 4, 50, False, '51,206,216,49,27'],
        ["basil1.jpeg", "basil2.jpeg", True, 4, 100, False, '75,152,19,36,156'],
        ["mill1.jpeg", "mill2.jpeg", False, 4, 100, False, '177,88,170,190,151,155'],
    ]
)
iface.launch(enable_queue=True)