Nazia Nafis
Update app.py
dd123fe
raw
history blame
616 Bytes
import streamlit as st
from transformers import pipeline
from textblob import TextBlob
pipe = pipeline('sentiment-analysis')
st.title("Sentiment Analysis")
st.subheader("Which framework would you like to use for sentiment analysis? ")
option = st.selectbox('Framework',('Transformers', 'TextBlob')) #option is stored in this variable
st.subheader("Enter the text you want to analyze.")
text = st.text_input('Enter text: ') #text is stored in this variable
if option == 'Transformers':
out = pipe(text)
else:
out = TextBlob(text)
out = out.sentiment
st.write("Sentiment of Text: ")
st.write(out)