Spaces:
Runtime error
Runtime error
File size: 11,830 Bytes
cb76d50 08090c3 cb76d50 08090c3 cb76d50 08090c3 cb76d50 08090c3 cb76d50 08090c3 cb76d50 08090c3 cb76d50 08090c3 cb76d50 08090c3 cb76d50 08090c3 cb76d50 08090c3 cb76d50 08090c3 cb76d50 08090c3 cb76d50 eba677f 08090c3 cb76d50 08090c3 cb76d50 08090c3 cb76d50 08090c3 cb76d50 08090c3 cb76d50 9ab2ff4 08090c3 cb76d50 08090c3 cb76d50 08090c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
### LIBRARIES ###
# # Data
import numpy as np
import pandas as pd
import torch
import json
from tqdm import tqdm
from math import floor
from datasets import load_dataset
from collections import defaultdict
from transformers import AutoTokenizer
pd.options.display.float_format = '${:,.2f}'.format
# Analysis
# from gensim.models.doc2vec import Doc2Vec
# from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score
import nltk
from nltk.cluster import KMeansClusterer
import scipy.spatial.distance as sdist
from scipy.spatial import distance_matrix
# nltk.download('punkt') #make sure that punkt is downloaded
# App & Visualization
import streamlit as st
import altair as alt
import plotly.graph_objects as go
from streamlit_vega_lite import altair_component
# utils
from random import sample
# from PIL import Image
def down_samp(embedding):
"""Down sample a data frame for altiar visualization """
# total number of positive and negative sentiments in the class
#embedding = embedding.groupby('slice').apply(lambda x: x.sample(frac=0.3))
total_size = embedding.groupby(['slice','label'], as_index=False).count()
user_data = 0
# if 'Your Sentences' in str(total_size['slice']):
# tmp = embedding.groupby(['slice'], as_index=False).count()
# val = int(tmp[tmp['slice'] == "Your Sentences"]['source'])
# user_data = val
max_sample = total_size.groupby('slice').max()['content']
# # down sample to meeting altair's max values
# # but keep the proportional representation of groups
down_samp = 1/(sum(max_sample.astype(float))/(1000-user_data))
max_samp = max_sample.apply(lambda x: floor(x*down_samp)).astype(int).to_dict()
max_samp['Your Sentences'] = user_data
# # sample down for each group in the data frame
embedding = embedding.groupby('slice').apply(lambda x: x.sample(n=max_samp.get(x.name))).reset_index(drop=True)
# # order the embedding
return(embedding)
def data_comparison(df):
# set up a dropdown select bindinf
# input_dropdown = alt.binding_select(options=['Negative Sentiment','Positive Sentiment'])
#data_kmeans['distance_from_centroid'] = data_kmeans.apply(distance_from_centroid, axis=1)
selection = alt.selection_multi(fields=['cluster','label'])
color = alt.condition(alt.datum.slice == 'high-loss', alt.Color('cluster:N', scale = alt.Scale(domain=df.cluster.tolist())), alt.value("lightgray"))
# color = alt.condition(selection,
# alt.Color('cluster:Q', legend=None),
# # scale = alt.Scale(domain = pop_domain,range=color_range)),
# alt.value('lightgray'))
opacity = alt.condition(selection, alt.value(0.7), alt.value(0.25))
# basic chart
scatter = alt.Chart(df).mark_point(size=100, filled=True).encode(
x=alt.X('x', axis=None),
y=alt.Y('y', axis=None),
color=color,
shape=alt.Shape('label', scale=alt.Scale(range=['circle', 'diamond'])),
tooltip=['cluster','slice','content','label','pred'],
opacity=opacity
).properties(
width=1500,
height=1000
).interactive()
legend = alt.Chart(df).mark_point().encode(
y=alt.Y('cluster:O', axis=alt.Axis(orient='right'), title=""),
x=alt.X("label"),
shape=alt.Shape('label', scale=alt.Scale(
range=['circle', 'diamond']), legend=None),
color=color,
).add_selection(
selection
)
layered = scatter |legend
layered = layered.configure_axis(
grid=False
).configure_view(
strokeOpacity=0
)
return layered
def quant_panel(embedding_df):
""" Quantitative Panel Layout"""
all_metrics = {}
# st.warning("**Data Comparison**")
# with st.expander("how to read this chart:"):
# st.markdown("* each **point** is a single sentence")
# st.markdown("* the **position** of each dot is determined mathematically based upon an analysis of the words in a sentence. The **closer** two points on the visualization the **more similar** the sentences are. The **further apart ** two points on the visualization the **more different** the sentences are")
# st.markdown(
# " * the **shape** of each point reflects whether it a positive (diamond) or negative sentiment (circle)")
# st.markdown("* the **color** of each point is the ")
st.altair_chart(data_comparison(down_samp(embedding_df)))
def frequent_tokens(data, tokenizer, loss_quantile=0.95, top_k=200, smoothing=0.005):
unique_tokens = []
tokens = []
for row in tqdm(data['content']):
tokenized = tokenizer(row,padding=True, return_tensors='pt')
tokens.append(tokenized['input_ids'].flatten())
unique_tokens.append(torch.unique(tokenized['input_ids']))
losses = data['loss'].astype(float)
high_loss = losses.quantile(loss_quantile)
loss_weights = (losses > high_loss)
loss_weights = loss_weights / loss_weights.sum()
token_frequencies = defaultdict(float)
token_frequencies_error = defaultdict(float)
weights_uniform = np.full_like(loss_weights, 1 / len(loss_weights))
num_examples = len(data)
for i in tqdm(range(num_examples)):
for token in unique_tokens[i]:
token_frequencies[token.item()] += weights_uniform[i]
token_frequencies_error[token.item()] += loss_weights[i]
token_lrs = {k: (smoothing+token_frequencies_error[k]) / (smoothing+token_frequencies[k]) for k in token_frequencies}
tokens_sorted = list(map(lambda x: x[0], sorted(token_lrs.items(), key=lambda x: x[1])[::-1]))
top_tokens = []
for i, (token) in enumerate(tokens_sorted[:top_k]):
top_tokens.append(['%10s' % (tokenizer.decode(token)), '%.4f' % (token_frequencies[token]), '%.4f' % (
token_frequencies_error[token]), '%4.2f' % (token_lrs[token])])
return pd.DataFrame(top_tokens, columns=['Token', 'Freq', 'Freq error slice', 'lrs'])
@st.cache(ttl=600)
def get_data(spotlight, emb):
preds = spotlight.outputs.numpy()
losses = spotlight.losses.numpy()
embeddings = pd.DataFrame(emb, columns=['x', 'y'])
num_examples = len(losses)
# dataset_labels = [dataset[i]['label'] for i in range(num_examples)]
return pd.concat([pd.DataFrame(np.transpose(np.vstack([dataset[:num_examples]['content'],
dataset[:num_examples]['label'], preds, losses])), columns=['content', 'label', 'pred', 'loss']), embeddings], axis=1)
@st.cache(ttl=600)
def clustering(data,num_clusters):
X = np.array(data['embedding'].tolist())
kclusterer = KMeansClusterer(
num_clusters, distance=nltk.cluster.util.cosine_distance,
repeats=25,avoid_empty_clusters=True)
assigned_clusters = kclusterer.cluster(X, assign_clusters=True)
data['cluster'] = pd.Series(assigned_clusters, index=data.index).astype('int')
data['centroid'] = data['cluster'].apply(lambda x: kclusterer.means()[x])
return data, assigned_clusters
def kmeans(df, num_clusters=3):
data_hl = df.loc[df['slice'] == 'high-loss']
data_kmeans,clusters = clustering(data_hl,num_clusters)
merged = pd.merge(df, data_kmeans, left_index=True, right_index=True, how='outer', suffixes=('', '_y'))
merged.drop(merged.filter(regex='_y$').columns.tolist(),axis=1,inplace=True)
merged['cluster'] = merged['cluster'].fillna(num_clusters).astype('int')
return merged
@st.cache(ttl=600)
def distance_from_centroid(row):
return sdist.norm(row['embedding'] - row['centroid'].tolist())
@st.cache(ttl=600)
def topic_distribution(weights, smoothing=0.01):
topic_frequencies = defaultdict(float)
topic_frequencies_spotlight = defaultdict(float)
weights_uniform = np.full_like(weights, 1 / len(weights))
num_examples = len(weights)
for i in range(num_examples):
example = dataset[i]
category = example['title']
topic_frequencies[category] += weights_uniform[i]
topic_frequencies_spotlight[category] += weights[i]
topic_ratios = {c: (smoothing + topic_frequencies_spotlight[c]) / (
smoothing + topic_frequencies[c]) for c in topic_frequencies}
categories_sorted = map(lambda x: x[0], sorted(
topic_ratios.items(), key=lambda x: x[1], reverse=True))
topic_distr = []
for category in categories_sorted:
topic_distr.append(['%.3f' % topic_frequencies[category], '%.3f' %
topic_frequencies_spotlight[category], '%.2f' % topic_ratios[category], '%s' % category])
return pd.DataFrame(topic_distr, columns=['Overall frequency', 'Error frequency', 'Ratio', 'Category'])
# for category in categories_sorted:
# return(topic_frequencies[category], topic_frequencies_spotlight[category], topic_ratios[category], category)
if __name__ == "__main__":
### STREAMLIT APP CONGFIG ###
st.set_page_config(layout="wide", page_title="Error Slice Analysis")
lcol, rcol = st.columns([2, 2])
# ******* loading the mode and the data
dataset = st.sidebar.selectbox(
"Dataset",
["amazon_polarity", "squad", "movielens", "waterbirds"],
index=0
)
tokenizer = AutoTokenizer.from_pretrained(
"distilbert-base-uncased-finetuned-sst-2-english")
model = st.sidebar.selectbox(
"Model",
["distilbert-base-uncased-finetuned-sst-2-english",
"distilbert-base-uncased-finetuned-sst-2-english"],
index=0
)
loss_quantile = st.sidebar.slider(
"Loss Quantile", min_value=0.0, max_value=1.0,step=0.1,value=0.95
)
run_kmeans = st.sidebar.radio("Cluster error slice?", ('True', 'False'), index=0)
num_clusters = st.sidebar.slider("# clusters", min_value=1, max_value=20, step=1, value=3)
### LOAD DATA AND SESSION VARIABLES ###
data = pd.read_parquet('./assets/data/amazon_polarity.test.parquet')
embedding_umap = data[['x','y']]
emb_df = pd.read_parquet('./assets/data/amazon_test_emb.parquet')
data_df = pd.DataFrame([data['content'], data['label'], data['pred'], data['loss'], emb_df['embedding'], data['x'], data['y']]).transpose()
if "user_data" not in st.session_state:
st.session_state["user_data"] = data_df
if "selected_slice" not in st.session_state:
st.session_state["selected_slice"] = None
if "embedding" not in st.session_state:
st.session_state["embedding"] = embedding_umap
data_df['loss'] = data_df['loss'].astype(float)
losses = data_df['loss']
high_loss = losses.quantile(loss_quantile)
data_df['slice'] = 'high-loss'
data_df['slice'] = data_df['slice'].where(data_df['loss'] > high_loss, 'low-loss')
if run_kmeans == 'True':
merged = kmeans(data_df,num_clusters=num_clusters)
with lcol:
st.markdown('<h3>Error Slices</h3>',unsafe_allow_html=True)
dataframe = merged[['content', 'label', 'pred', 'loss', 'cluster']].sort_values(
by=['loss'], ascending=False)
table_html = dataframe.to_html(
columns=['content', 'label', 'pred', 'loss', 'cluster'], max_rows=50)
# table_html = table_html.replace("<th>", '<th align="left">') # left-align the headers
st.write(dataframe)
# st_aggrid.AgGrid(dataframe)
# table_html = dataframe.to_html(columns=['content', 'label', 'pred', 'loss'], max_rows=100)
# table_html = table_html.replace("<th>", '<th align="left">') # left-align the headers
# st.write(table_html)
with rcol:
st.markdown('<h3>Word Distribution in Error Slice</h3>', unsafe_allow_html=True)
commontokens = frequent_tokens(merged, tokenizer, loss_quantile=loss_quantile)
st.write(commontokens)
quant_panel(merged) |