|
#include "common.h" |
|
|
|
#include "console.h" |
|
#include "llama.h" |
|
|
|
#include <cassert> |
|
#include <cinttypes> |
|
#include <cmath> |
|
#include <cstdio> |
|
#include <cstring> |
|
#include <ctime> |
|
#include <fstream> |
|
#include <iostream> |
|
#include <sstream> |
|
#include <string> |
|
#include <vector> |
|
|
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) |
|
#include <signal.h> |
|
#include <unistd.h> |
|
#elif defined (_WIN32) |
|
#define WIN32_LEAN_AND_MEAN |
|
#ifndef NOMINMAX |
|
#define NOMINMAX |
|
#endif |
|
#include <windows.h> |
|
#include <signal.h> |
|
#endif |
|
|
|
#if defined(_MSC_VER) |
|
#pragma warning(disable: 4244 4267) |
|
#endif |
|
|
|
static llama_context ** g_ctx; |
|
static llama_model ** g_model; |
|
static gpt_params * g_params; |
|
static std::vector<llama_token> * g_input_tokens; |
|
static std::ostringstream * g_output_ss; |
|
static std::vector<llama_token> * g_output_tokens; |
|
static bool is_interacting = false; |
|
|
|
static bool file_exists(const std::string &path) { |
|
std::ifstream f(path.c_str()); |
|
return f.good(); |
|
} |
|
|
|
static bool file_is_empty(const std::string &path) { |
|
std::ifstream f; |
|
f.exceptions(std::ifstream::failbit | std::ifstream::badbit); |
|
f.open(path.c_str(), std::ios::in | std::ios::binary | std::ios::ate); |
|
return f.tellg() == 0; |
|
} |
|
|
|
static void write_logfile( |
|
const llama_context * ctx, const gpt_params & params, const llama_model * model, |
|
const std::vector<llama_token> & input_tokens, const std::string & output, |
|
const std::vector<llama_token> & output_tokens |
|
) { |
|
if (params.logdir.empty()) { |
|
return; |
|
} |
|
|
|
const std::string timestamp = get_sortable_timestamp(); |
|
|
|
const bool success = create_directory_with_parents(params.logdir); |
|
if (!success) { |
|
fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n", |
|
__func__, params.logdir.c_str()); |
|
return; |
|
} |
|
|
|
const std::string logfile_path = params.logdir + timestamp + ".yml"; |
|
FILE * logfile = fopen(logfile_path.c_str(), "w"); |
|
|
|
if (logfile == NULL) { |
|
fprintf(stderr, "%s: failed to open logfile %s\n", __func__, logfile_path.c_str()); |
|
return; |
|
} |
|
|
|
fprintf(logfile, "binary: main\n"); |
|
char model_desc[128]; |
|
llama_model_desc(model, model_desc, sizeof(model_desc)); |
|
dump_non_result_info_yaml(logfile, params, ctx, timestamp, input_tokens, model_desc); |
|
|
|
fprintf(logfile, "\n"); |
|
fprintf(logfile, "######################\n"); |
|
fprintf(logfile, "# Generation Results #\n"); |
|
fprintf(logfile, "######################\n"); |
|
fprintf(logfile, "\n"); |
|
|
|
dump_string_yaml_multiline(logfile, "output", output.c_str()); |
|
dump_vector_int_yaml(logfile, "output_tokens", output_tokens); |
|
|
|
llama_dump_timing_info_yaml(logfile, ctx); |
|
fclose(logfile); |
|
} |
|
|
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32) |
|
static void sigint_handler(int signo) { |
|
if (signo == SIGINT) { |
|
if (!is_interacting && g_params->interactive) { |
|
is_interacting = true; |
|
} else { |
|
console::cleanup(); |
|
printf("\n"); |
|
|
|
write_logfile(*g_ctx, *g_params, *g_model, *g_input_tokens, g_output_ss->str(), *g_output_tokens); |
|
_exit(130); |
|
} |
|
} |
|
} |
|
#endif |
|
|
|
static void llama_log_callback_logTee(ggml_log_level level, const char * text, void * user_data) { |
|
(void) level; |
|
(void) user_data; |
|
|
|
} |
|
|
|
int main(int argc, char ** argv) { |
|
gpt_params params; |
|
g_params = ¶ms; |
|
|
|
if (!gpt_params_parse(argc, argv, params)) { |
|
return 1; |
|
} |
|
llama_sampling_params & sparams = params.sparams; |
|
|
|
#ifndef LOG_DISABLE_LOGS |
|
log_set_target(log_filename_generator("main", "log")); |
|
|
|
log_dump_cmdline(argc, argv); |
|
llama_log_set(llama_log_callback_logTee, nullptr); |
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
|
|
console::init(params.simple_io, params.use_color); |
|
atexit([]() { console::cleanup(); }); |
|
|
|
if (params.logits_all) { |
|
printf("\n************\n"); |
|
printf("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__); |
|
printf("************\n\n"); |
|
|
|
return 0; |
|
} |
|
|
|
if (params.embedding) { |
|
printf("\n************\n"); |
|
printf("%s: please use the 'embedding' tool for embedding calculations\n", __func__); |
|
printf("************\n\n"); |
|
|
|
return 0; |
|
} |
|
|
|
if (params.n_ctx != 0 && params.n_ctx < 8) { |
|
LOG_TEE("%s: warning: minimum context size is 8, using minimum size.\n", __func__); |
|
params.n_ctx = 8; |
|
} |
|
|
|
if (params.rope_freq_base != 0.0) { |
|
LOG_TEE("%s: warning: changing RoPE frequency base to %g.\n", __func__, params.rope_freq_base); |
|
} |
|
|
|
if (params.rope_freq_scale != 0.0) { |
|
LOG_TEE("%s: warning: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale); |
|
} |
|
|
|
|
|
|
|
|
|
if (params.seed == LLAMA_DEFAULT_SEED) { |
|
params.seed = time(NULL); |
|
} |
|
|
|
|
|
|
|
std::mt19937 rng(params.seed); |
|
if (params.random_prompt) { |
|
params.prompt = gpt_random_prompt(rng); |
|
} |
|
|
|
LOG("%s: llama backend init\n", __func__); |
|
llama_backend_init(); |
|
llama_numa_init(params.numa); |
|
|
|
llama_model * model; |
|
llama_context * ctx; |
|
llama_context * ctx_guidance = NULL; |
|
g_model = &model; |
|
g_ctx = &ctx; |
|
|
|
|
|
LOG("%s: load the model and apply lora adapter, if any\n", __func__); |
|
std::tie(model, ctx) = llama_init_from_gpt_params(params); |
|
if (sparams.cfg_scale > 1.f) { |
|
struct llama_context_params lparams = llama_context_params_from_gpt_params(params); |
|
ctx_guidance = llama_new_context_with_model(model, lparams); |
|
} |
|
|
|
if (model == NULL) { |
|
LOG_TEE("%s: error: unable to load model\n", __func__); |
|
return 1; |
|
} |
|
|
|
const int n_ctx_train = llama_n_ctx_train(model); |
|
const int n_ctx = llama_n_ctx(ctx); |
|
|
|
|
|
if (n_ctx > n_ctx_train) { |
|
LOG_TEE("%s: warning: model was trained on only %d context tokens (%d specified)\n", |
|
__func__, n_ctx_train, n_ctx); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
std::string path_session = params.path_prompt_cache; |
|
std::vector<llama_token> session_tokens; |
|
|
|
if (!path_session.empty()) { |
|
|
|
if (!file_exists(path_session)) { |
|
|
|
} else if (file_is_empty(path_session)) { |
|
|
|
} else { |
|
|
|
session_tokens.resize(n_ctx); |
|
size_t n_token_count_out = 0; |
|
if (!llama_load_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out)) { |
|
LOG_TEE("%s: error: failed to load session file '%s'\n", __func__, path_session.c_str()); |
|
return 1; |
|
} |
|
session_tokens.resize(n_token_count_out); |
|
llama_set_rng_seed(ctx, params.seed); |
|
|
|
} |
|
} |
|
|
|
const bool add_bos = llama_should_add_bos_token(model); |
|
|
|
|
|
std::vector<llama_token> embd_inp; |
|
|
|
if (params.interactive_first || params.instruct || params.chatml || !params.prompt.empty() || session_tokens.empty()) { |
|
LOG("tokenize the prompt\n"); |
|
if (params.chatml) { |
|
params.prompt = "<|im_start|>system\n" + params.prompt + "<|im_end|>"; |
|
} |
|
embd_inp = ::llama_tokenize(ctx, params.prompt, add_bos, true); |
|
} else { |
|
LOG("use session tokens\n"); |
|
embd_inp = session_tokens; |
|
} |
|
|
|
LOG("prompt: \"%s\"\n", log_tostr(params.prompt)); |
|
LOG("tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str()); |
|
|
|
|
|
if (embd_inp.empty()) { |
|
embd_inp.push_back(llama_token_bos(model)); |
|
LOG("embd_inp was considered empty and bos was added: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str()); |
|
} |
|
|
|
|
|
std::vector<llama_token> guidance_inp; |
|
int guidance_offset = 0; |
|
int original_prompt_len = 0; |
|
if (ctx_guidance) { |
|
LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(sparams.cfg_negative_prompt)); |
|
|
|
guidance_inp = ::llama_tokenize(ctx_guidance, sparams.cfg_negative_prompt, add_bos, true); |
|
LOG("guidance_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_guidance, guidance_inp).c_str()); |
|
|
|
std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, add_bos, true); |
|
LOG("original_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, original_inp).c_str()); |
|
|
|
original_prompt_len = original_inp.size(); |
|
guidance_offset = (int)guidance_inp.size() - original_prompt_len; |
|
LOG("original_prompt_len: %s", log_tostr(original_prompt_len)); |
|
LOG("guidance_offset: %s", log_tostr(guidance_offset)); |
|
} |
|
|
|
if ((int) embd_inp.size() > n_ctx - 4) { |
|
LOG_TEE("%s: error: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4); |
|
return 1; |
|
} |
|
|
|
|
|
size_t n_matching_session_tokens = 0; |
|
if (!session_tokens.empty()) { |
|
for (llama_token id : session_tokens) { |
|
if (n_matching_session_tokens >= embd_inp.size() || id != embd_inp[n_matching_session_tokens]) { |
|
break; |
|
} |
|
n_matching_session_tokens++; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
llama_kv_cache_seq_rm(ctx, -1, n_matching_session_tokens, -1); |
|
} |
|
|
|
LOGLN( |
|
"recalculate the cached logits (check): embd_inp.empty() %s, n_matching_session_tokens %zu, embd_inp.size() %zu, session_tokens.size() %zu, embd_inp.size() %zu", |
|
log_tostr(embd_inp.empty()), n_matching_session_tokens, embd_inp.size(), session_tokens.size(), embd_inp.size()); |
|
|
|
|
|
|
|
if (!embd_inp.empty() && n_matching_session_tokens == embd_inp.size() && session_tokens.size() > embd_inp.size()) { |
|
LOGLN("recalculate the cached logits (do): session_tokens.resize( %zu )", embd_inp.size() - 1); |
|
|
|
session_tokens.resize(embd_inp.size() - 1); |
|
} |
|
|
|
|
|
if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size() || params.instruct || params.chatml) { |
|
params.n_keep = (int)embd_inp.size(); |
|
} else { |
|
params.n_keep += add_bos; |
|
} |
|
|
|
|
|
const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", add_bos, true); |
|
const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false, true); |
|
|
|
|
|
|
|
|
|
|
|
const auto cml_pfx = ::llama_tokenize(ctx, "\n<|im_start|>user\n", add_bos, true); |
|
const auto cml_sfx = ::llama_tokenize(ctx, "<|im_end|>\n<|im_start|>assistant\n", false, true); |
|
|
|
|
|
|
|
|
|
|
|
if (params.instruct) { |
|
params.interactive_first = true; |
|
params.antiprompt.emplace_back("### Instruction:\n\n"); |
|
} |
|
|
|
else if (params.chatml) { |
|
params.interactive_first = true; |
|
params.antiprompt.emplace_back("<|im_start|>user\n"); |
|
} |
|
|
|
|
|
if (params.interactive_first) { |
|
params.interactive = true; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
{ |
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) |
|
struct sigaction sigint_action; |
|
sigint_action.sa_handler = sigint_handler; |
|
sigemptyset (&sigint_action.sa_mask); |
|
sigint_action.sa_flags = 0; |
|
sigaction(SIGINT, &sigint_action, NULL); |
|
#elif defined (_WIN32) |
|
auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL { |
|
return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false; |
|
}; |
|
SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true); |
|
#endif |
|
} |
|
|
|
if (params.interactive) { |
|
|
|
|
|
if (!params.antiprompt.empty()) { |
|
for (const auto & antiprompt : params.antiprompt) { |
|
|
|
if (params.verbose_prompt) { |
|
auto tmp = ::llama_tokenize(ctx, antiprompt, false, true); |
|
for (int i = 0; i < (int) tmp.size(); i++) { |
|
|
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
int ga_i = 0; |
|
|
|
const int ga_n = params.grp_attn_n; |
|
const int ga_w = params.grp_attn_w; |
|
|
|
if (ga_n != 1) { |
|
GGML_ASSERT(ga_n > 0 && "grp_attn_n must be positive"); |
|
GGML_ASSERT(ga_w % ga_n == 0 && "grp_attn_w must be a multiple of grp_attn_n"); |
|
|
|
|
|
|
|
} |
|
|
|
|
|
if (params.interactive) { |
|
const char *control_message; |
|
if (params.multiline_input) { |
|
control_message = " - To return control to LLaMa, end your input with '\\'.\n" |
|
" - To return control without starting a new line, end your input with '/'.\n"; |
|
} else { |
|
control_message = " - Press Return to return control to LLaMa.\n" |
|
" - To return control without starting a new line, end your input with '/'.\n" |
|
" - If you want to submit another line, end your input with '\\'.\n"; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
is_interacting = params.interactive_first; |
|
} |
|
|
|
bool is_antiprompt = false; |
|
bool input_echo = true; |
|
bool display = true; |
|
bool need_to_save_session = !path_session.empty() && n_matching_session_tokens < embd_inp.size(); |
|
|
|
int n_past = 0; |
|
int n_remain = params.n_predict; |
|
int n_consumed = 0; |
|
int n_session_consumed = 0; |
|
int n_past_guidance = 0; |
|
|
|
std::vector<int> input_tokens; g_input_tokens = &input_tokens; |
|
std::vector<int> output_tokens; g_output_tokens = &output_tokens; |
|
std::ostringstream output_ss; g_output_ss = &output_ss; |
|
|
|
|
|
console::set_display(console::prompt); |
|
display = params.display_prompt; |
|
|
|
std::vector<llama_token> embd; |
|
std::vector<llama_token> embd_guidance; |
|
|
|
|
|
std::vector<std::vector<llama_token>> antiprompt_ids; |
|
|
|
antiprompt_ids.reserve(params.antiprompt.size()); |
|
for (const std::string & antiprompt : params.antiprompt) { |
|
antiprompt_ids.emplace_back(::llama_tokenize(ctx, antiprompt, false, true)); |
|
} |
|
|
|
struct llama_sampling_context * ctx_sampling = llama_sampling_init(sparams); |
|
|
|
while ((n_remain != 0 && !is_antiprompt) || params.interactive) { |
|
|
|
if (!embd.empty()) { |
|
|
|
|
|
int max_embd_size = n_ctx - 4; |
|
|
|
|
|
if ((int) embd.size() > max_embd_size) { |
|
const int skipped_tokens = (int) embd.size() - max_embd_size; |
|
embd.resize(max_embd_size); |
|
|
|
console::set_display(console::error); |
|
printf("<<input too long: skipped %d token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : ""); |
|
console::set_display(console::reset); |
|
fflush(stdout); |
|
} |
|
|
|
if (ga_n == 1) { |
|
|
|
|
|
|
|
|
|
if (n_past + (int) embd.size() + std::max<int>(0, guidance_offset) > n_ctx) { |
|
if (params.n_predict == -2) { |
|
|
|
break; |
|
} |
|
|
|
const int n_left = n_past - params.n_keep; |
|
const int n_discard = n_left/2; |
|
|
|
LOG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n", |
|
n_past, n_left, n_ctx, params.n_keep, n_discard); |
|
|
|
llama_kv_cache_seq_rm (ctx, 0, params.n_keep , params.n_keep + n_discard); |
|
llama_kv_cache_seq_add(ctx, 0, params.n_keep + n_discard, n_past, -n_discard); |
|
|
|
n_past -= n_discard; |
|
|
|
if (ctx_guidance) { |
|
n_past_guidance -= n_discard; |
|
} |
|
|
|
LOG("after swap: n_past = %d, n_past_guidance = %d\n", n_past, n_past_guidance); |
|
|
|
LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd).c_str()); |
|
|
|
LOG("clear session path\n"); |
|
path_session.clear(); |
|
} |
|
} else { |
|
|
|
while (n_past >= ga_i + ga_w) { |
|
const int ib = (ga_n*ga_i)/ga_w; |
|
const int bd = (ga_w/ga_n)*(ga_n - 1); |
|
const int dd = (ga_w/ga_n) - ib*bd - ga_w; |
|
|
|
LOG("\n"); |
|
LOG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", ga_i, n_past, ib*bd, ga_i + ib*bd, n_past + ib*bd); |
|
LOG("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n, (ga_i + ib*bd)/ga_n, (ga_i + ib*bd + ga_w)/ga_n); |
|
LOG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", ga_i + ib*bd + ga_w, n_past + ib*bd, dd, ga_i + ib*bd + ga_w + dd, n_past + ib*bd + dd); |
|
|
|
llama_kv_cache_seq_add(ctx, 0, ga_i, n_past, ib*bd); |
|
llama_kv_cache_seq_div(ctx, 0, ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n); |
|
llama_kv_cache_seq_add(ctx, 0, ga_i + ib*bd + ga_w, n_past + ib*bd, dd); |
|
|
|
n_past -= bd; |
|
|
|
ga_i += ga_w/ga_n; |
|
|
|
LOG("\nn_past_old = %d, n_past = %d, ga_i = %d\n\n", n_past + bd, n_past, ga_i); |
|
} |
|
} |
|
|
|
|
|
if (n_session_consumed < (int) session_tokens.size()) { |
|
size_t i = 0; |
|
for ( ; i < embd.size(); i++) { |
|
if (embd[i] != session_tokens[n_session_consumed]) { |
|
session_tokens.resize(n_session_consumed); |
|
break; |
|
} |
|
|
|
n_past++; |
|
n_session_consumed++; |
|
|
|
if (n_session_consumed >= (int) session_tokens.size()) { |
|
++i; |
|
break; |
|
} |
|
} |
|
if (i > 0) { |
|
embd.erase(embd.begin(), embd.begin() + i); |
|
} |
|
} |
|
|
|
|
|
|
|
if (ctx_guidance) { |
|
int input_size = 0; |
|
llama_token * input_buf = NULL; |
|
|
|
if (n_past_guidance < (int) guidance_inp.size()) { |
|
|
|
|
|
|
|
|
|
embd_guidance = guidance_inp; |
|
if (embd.begin() + original_prompt_len < embd.end()) { |
|
embd_guidance.insert( |
|
embd_guidance.end(), |
|
embd.begin() + original_prompt_len, |
|
embd.end() |
|
); |
|
} |
|
|
|
input_buf = embd_guidance.data(); |
|
input_size = embd_guidance.size(); |
|
|
|
LOG("guidance context: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_guidance).c_str()); |
|
} else { |
|
input_buf = embd.data(); |
|
input_size = embd.size(); |
|
} |
|
|
|
for (int i = 0; i < input_size; i += params.n_batch) { |
|
int n_eval = std::min(input_size - i, params.n_batch); |
|
if (llama_decode(ctx_guidance, llama_batch_get_one(input_buf + i, n_eval, n_past_guidance, 0))) { |
|
|
|
return 1; |
|
} |
|
|
|
n_past_guidance += n_eval; |
|
} |
|
} |
|
|
|
for (int i = 0; i < (int) embd.size(); i += params.n_batch) { |
|
int n_eval = (int) embd.size() - i; |
|
if (n_eval > params.n_batch) { |
|
n_eval = params.n_batch; |
|
} |
|
|
|
LOG("eval: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd).c_str()); |
|
|
|
if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval, n_past, 0))) { |
|
LOG_TEE("%s : failed to eval\n", __func__); |
|
return 1; |
|
} |
|
|
|
n_past += n_eval; |
|
|
|
|
|
|
|
|
|
|
|
|
|
} |
|
|
|
if (!embd.empty() && !path_session.empty()) { |
|
session_tokens.insert(session_tokens.end(), embd.begin(), embd.end()); |
|
n_session_consumed = session_tokens.size(); |
|
} |
|
} |
|
|
|
embd.clear(); |
|
embd_guidance.clear(); |
|
|
|
if ((int) embd_inp.size() <= n_consumed && !is_interacting) { |
|
|
|
if (!path_session.empty() && need_to_save_session && !params.prompt_cache_ro) { |
|
need_to_save_session = false; |
|
llama_save_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size()); |
|
|
|
LOG("saved session to %s\n", path_session.c_str()); |
|
} |
|
|
|
const llama_token id = llama_sampling_sample(ctx_sampling, ctx, ctx_guidance); |
|
|
|
llama_sampling_accept(ctx_sampling, ctx, id, true); |
|
|
|
LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, ctx_sampling->prev).c_str()); |
|
|
|
embd.push_back(id); |
|
|
|
|
|
input_echo = true; |
|
|
|
|
|
--n_remain; |
|
|
|
LOG("n_remain: %d\n", n_remain); |
|
} else { |
|
|
|
LOG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed); |
|
while ((int) embd_inp.size() > n_consumed) { |
|
embd.push_back(embd_inp[n_consumed]); |
|
|
|
|
|
|
|
llama_sampling_accept(ctx_sampling, ctx, embd_inp[n_consumed], false); |
|
|
|
++n_consumed; |
|
if ((int) embd.size() >= params.n_batch) { |
|
break; |
|
} |
|
} |
|
} |
|
|
|
|
|
if (input_echo && display) { |
|
for (auto id : embd) { |
|
const std::string token_str = llama_token_to_piece(ctx, id); |
|
printf("%s", token_str.c_str()); |
|
|
|
if (embd.size() > 1) { |
|
input_tokens.push_back(id); |
|
} else { |
|
output_tokens.push_back(id); |
|
output_ss << token_str; |
|
} |
|
} |
|
fflush(stdout); |
|
} |
|
|
|
if (input_echo && (int) embd_inp.size() == n_consumed) { |
|
console::set_display(console::reset); |
|
display = true; |
|
} |
|
|
|
|
|
if ((int) embd_inp.size() <= n_consumed) { |
|
|
|
if (!params.antiprompt.empty()) { |
|
const int n_prev = 32; |
|
const std::string last_output = llama_sampling_prev_str(ctx_sampling, ctx, n_prev); |
|
|
|
is_antiprompt = false; |
|
|
|
|
|
|
|
for (std::string & antiprompt : params.antiprompt) { |
|
size_t extra_padding = params.interactive ? 0 : 2; |
|
size_t search_start_pos = last_output.length() > static_cast<size_t>(antiprompt.length() + extra_padding) |
|
? last_output.length() - static_cast<size_t>(antiprompt.length() + extra_padding) |
|
: 0; |
|
|
|
if (last_output.find(antiprompt, search_start_pos) != std::string::npos) { |
|
if (params.interactive) { |
|
is_interacting = true; |
|
} |
|
is_antiprompt = true; |
|
break; |
|
} |
|
} |
|
|
|
|
|
llama_token last_token = llama_sampling_last(ctx_sampling); |
|
for (std::vector<llama_token> ids : antiprompt_ids) { |
|
if (ids.size() == 1 && last_token == ids[0]) { |
|
if (params.interactive) { |
|
is_interacting = true; |
|
} |
|
is_antiprompt = true; |
|
break; |
|
} |
|
} |
|
|
|
if (is_antiprompt) { |
|
LOG("found antiprompt: %s\n", last_output.c_str()); |
|
} |
|
} |
|
|
|
|
|
if (llama_sampling_last(ctx_sampling) == llama_token_eos(model)) { |
|
LOG("found EOS token\n"); |
|
|
|
if (params.interactive) { |
|
if (!params.antiprompt.empty()) { |
|
|
|
const auto first_antiprompt = ::llama_tokenize(ctx, params.antiprompt.front(), false, true); |
|
embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end()); |
|
is_antiprompt = true; |
|
} |
|
|
|
is_interacting = true; |
|
printf("\n"); |
|
} else if (params.instruct || params.chatml) { |
|
is_interacting = true; |
|
} |
|
} |
|
|
|
if (n_past > 0 && is_interacting) { |
|
LOG("waiting for user input\n"); |
|
|
|
if (params.instruct || params.chatml) { |
|
printf("\n> "); |
|
} |
|
|
|
if (params.input_prefix_bos) { |
|
LOG("adding input prefix BOS token\n"); |
|
embd_inp.push_back(llama_token_bos(model)); |
|
} |
|
|
|
std::string buffer; |
|
if (!params.input_prefix.empty()) { |
|
LOG("appending input prefix: '%s'\n", params.input_prefix.c_str()); |
|
printf("%s", params.input_prefix.c_str()); |
|
} |
|
|
|
|
|
console::set_display(console::user_input); |
|
display = params.display_prompt; |
|
|
|
std::string line; |
|
bool another_line = true; |
|
do { |
|
another_line = console::readline(line, params.multiline_input); |
|
buffer += line; |
|
} while (another_line); |
|
|
|
|
|
console::set_display(console::reset); |
|
display = true; |
|
|
|
|
|
|
|
if (buffer.length() > 1) { |
|
|
|
if (!params.input_suffix.empty()) { |
|
LOG("appending input suffix: '%s'\n", params.input_suffix.c_str()); |
|
printf("%s", params.input_suffix.c_str()); |
|
} |
|
|
|
LOG("buffer: '%s'\n", buffer.c_str()); |
|
|
|
const size_t original_size = embd_inp.size(); |
|
|
|
|
|
if (params.instruct && !is_antiprompt) { |
|
LOG("inserting instruction prefix\n"); |
|
n_consumed = embd_inp.size(); |
|
embd_inp.insert(embd_inp.end(), inp_pfx.begin(), inp_pfx.end()); |
|
} |
|
|
|
if (params.chatml && !is_antiprompt) { |
|
LOG("inserting chatml prefix\n"); |
|
n_consumed = embd_inp.size(); |
|
embd_inp.insert(embd_inp.end(), cml_pfx.begin(), cml_pfx.end()); |
|
} |
|
if (params.escape) { |
|
process_escapes(buffer); |
|
} |
|
|
|
const auto line_pfx = ::llama_tokenize(ctx, params.input_prefix, false, true); |
|
const auto line_inp = ::llama_tokenize(ctx, buffer, false, false); |
|
const auto line_sfx = ::llama_tokenize(ctx, params.input_suffix, false, true); |
|
|
|
LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp).c_str()); |
|
|
|
embd_inp.insert(embd_inp.end(), line_pfx.begin(), line_pfx.end()); |
|
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end()); |
|
embd_inp.insert(embd_inp.end(), line_sfx.begin(), line_sfx.end()); |
|
|
|
|
|
if (params.instruct) { |
|
LOG("inserting instruction suffix\n"); |
|
embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end()); |
|
} |
|
|
|
if (params.chatml) { |
|
LOG("inserting chatml suffix\n"); |
|
embd_inp.insert(embd_inp.end(), cml_sfx.begin(), cml_sfx.end()); |
|
} |
|
|
|
for (size_t i = original_size; i < embd_inp.size(); ++i) { |
|
const llama_token token = embd_inp[i]; |
|
output_tokens.push_back(token); |
|
output_ss << llama_token_to_piece(ctx, token); |
|
} |
|
|
|
n_remain -= line_inp.size(); |
|
LOG("n_remain: %d\n", n_remain); |
|
} else { |
|
LOG("empty line, passing control back\n"); |
|
} |
|
|
|
input_echo = false; |
|
} |
|
|
|
if (n_past > 0) { |
|
if (is_interacting) { |
|
llama_sampling_reset(ctx_sampling); |
|
} |
|
is_interacting = false; |
|
} |
|
} |
|
|
|
|
|
if (!embd.empty() && embd.back() == llama_token_eos(model) && !(params.instruct || params.interactive || params.chatml)) { |
|
|
|
break; |
|
} |
|
|
|
|
|
|
|
if (params.interactive && n_remain <= 0 && params.n_predict >= 0) { |
|
n_remain = params.n_predict; |
|
is_interacting = true; |
|
} |
|
} |
|
|
|
if (!path_session.empty() && params.prompt_cache_all && !params.prompt_cache_ro) { |
|
|
|
llama_save_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size()); |
|
} |
|
|
|
|
|
write_logfile(ctx, params, model, input_tokens, output_ss.str(), output_tokens); |
|
|
|
if (ctx_guidance) { llama_free(ctx_guidance); } |
|
llama_free(ctx); |
|
llama_free_model(model); |
|
|
|
llama_sampling_free(ctx_sampling); |
|
llama_backend_free(); |
|
|
|
|
|
|
|
return 0; |
|
} |
|
|