|
import gradio as gr |
|
from gpt4all import GPT4All |
|
from huggingface_hub import hf_hub_download |
|
import subprocess |
|
import asyncio |
|
|
|
title = "Apollo-7B-GGUF Run On CPU" |
|
|
|
description = """ |
|
🔎 [Apollo-7B](https://huggingface.co/FreedomIntelligence/Apollo-7B) [GGUF format model](https://huggingface.co/FreedomIntelligence/Apollo-7B-GGUF) , 8-bit quantization balanced quality gguf version, running on CPU. Using [GitHub - llama.cpp](https://github.com/ggerganov/llama.cpp) [GitHub - gpt4all](https://github.com/nomic-ai/gpt4all). |
|
|
|
🔨 Running on CPU-Basic free hardware. Suggest duplicating this space to run without a queue. |
|
|
|
Mistral does not support system prompt symbol (such as ```<<SYS>>```) now, input your system prompt in the first message if you need. Learn more: [Guardrailing Mistral 7B](https://docs.mistral.ai/usage/guardrailing). |
|
""" |
|
|
|
""" |
|
[Model From TheBloke/Mistral-6B-Instruct-v0.1-GGUF](https://huggingface.co/FreedomIntelligence/Apollo-6B-GGUF) |
|
[Mistral-instruct-v0.1 System prompt](https://docs.mistral.ai/usage/guardrailing) |
|
""" |
|
|
|
model_path = "models" |
|
model_name = "Apollo-6B-q8_0.gguf" |
|
hf_hub_download(repo_id="FreedomIntelligence/Apollo-6B-GGUF", filename=model_name, local_dir=model_path, local_dir_use_symlinks=False) |
|
|
|
print("Start the model init process") |
|
model = model = GPT4All(model_name, model_path, allow_download = False, device="cpu") |
|
print("Finish the model init process") |
|
|
|
model.config["promptTemplate"] = "{0}" |
|
model.config["systemPrompt"] = "You are a multiligual AI doctor, your name is Apollo." |
|
model._is_chat_session_activated = False |
|
|
|
max_new_tokens = 2048 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
async def generater(message, history, temperature, top_p, top_k): |
|
|
|
prompt = "" |
|
for user_message, assistant_message in history: |
|
prompt += model.config["promptTemplate"].format(user_message) |
|
prompt += assistant_message |
|
prompt += model.config["promptTemplate"].format(message) |
|
|
|
|
|
print(f"Final prompt: {prompt}") |
|
|
|
cmd = [ |
|
"./main", |
|
"-m", model_path+"/"+model_name, |
|
"--prompt", prompt |
|
] |
|
|
|
|
|
process = subprocess.Popen( |
|
cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True |
|
) |
|
|
|
|
|
yield "Generating response..." |
|
|
|
try: |
|
while True: |
|
line = process.stdout.readline() |
|
if not line: |
|
break |
|
print(f"Generated line: {line.strip()}") |
|
yield line |
|
except Exception as e: |
|
print(f"Error during generation: {e}") |
|
yield "Sorry, an error occurred while generating the response." |
|
|
|
|
|
def vote(data: gr.LikeData): |
|
if data.liked: |
|
return |
|
else: |
|
return |
|
|
|
chatbot = gr.Chatbot(avatar_images=('resourse/user-icon.png', 'resourse/chatbot-icon.png'),bubble_full_width = False) |
|
|
|
additional_inputs=[ |
|
gr.Slider( |
|
label="temperature", |
|
value=0.5, |
|
minimum=0.0, |
|
maximum=2.0, |
|
step=0.05, |
|
interactive=True, |
|
info="Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic.", |
|
), |
|
gr.Slider( |
|
label="top_p", |
|
value=1.0, |
|
minimum=0.0, |
|
maximum=1.0, |
|
step=0.01, |
|
interactive=True, |
|
info="0.1 means only the tokens comprising the top 10% probability mass are considered. Suggest set to 1 and use temperature. 1 means 100% and will disable it", |
|
), |
|
gr.Slider( |
|
label="top_k", |
|
value=40, |
|
minimum=0, |
|
maximum=1000, |
|
step=1, |
|
interactive=True, |
|
info="limits candidate tokens to a fixed number after sorting by probability. Setting it higher than the vocabulary size deactivates this limit.", |
|
) |
|
] |
|
|
|
iface = gr.ChatInterface( |
|
fn = generater, |
|
title=title, |
|
description = description, |
|
chatbot=chatbot, |
|
additional_inputs=additional_inputs, |
|
examples=[ |
|
["枸杞有什么疗效"], |
|
["I've taken several courses of antibiotics for recurring infections, and now they seem less effective. Am I developing antibiotic resistance?"], |
|
] |
|
) |
|
|
|
with gr.Blocks(css="resourse/style/custom.css") as demo: |
|
chatbot.like(vote, None, None) |
|
iface.render() |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=3).launch() |
|
|