Gradio / app.py
nchen909's picture
Update app.py
0c62e8f verified
import gradio as gr
from gpt4all import GPT4All
from huggingface_hub import hf_hub_download
import subprocess
import asyncio
import os
import stat
title = "Apollo-6B-GGUF Run On CPU"
description = """
🔎 [Apollo-6B](https://huggingface.co/FreedomIntelligence/Apollo-6B) [GGUF format model](https://huggingface.co/FreedomIntelligence/Apollo-6B-GGUF) , 8-bit quantization balanced quality gguf version, running on CPU. Using [GitHub - llama.cpp](https://github.com/ggerganov/llama.cpp) [GitHub - gpt4all](https://github.com/nomic-ai/gpt4all).
🔨 Running on CPU-Basic free hardware. Suggest duplicating this space to run without a queue.
"""
"""
[Model From FreedomIntelligence/Apollo-6B-GGUF](https://huggingface.co/FreedomIntelligence/Apollo-6B-GGUF)
"""
model_path = "models"
model_name = "Apollo-6B-q8_0.gguf"
hf_hub_download(repo_id="FreedomIntelligence/Apollo-6B-GGUF", filename=model_name, local_dir=model_path, local_dir_use_symlinks=False)
current_dir = os.path.dirname(os.path.realpath(__file__))
main_path = os.path.join(current_dir, 'main')
os.chmod(main_path, os.stat(main_path).st_mode | stat.S_IEXEC)
print("Start the model init process")
model = model = GPT4All(model_name, model_path, allow_download = False, device="cpu")
print("Finish the model init process")
model.config["promptTemplate"] = "{0}"
model.config["systemPrompt"] = "You are a multiligual AI doctor, your name is Apollo."
model._is_chat_session_activated = False
max_new_tokens = 2048
# def generater(message, history, temperature, top_p, top_k):
# prompt = "<s>"
# for user_message, assistant_message in history:
# prompt += model.config["promptTemplate"].format(user_message)
# prompt += assistant_message + "</s>"
# prompt += model.config["promptTemplate"].format(message)
# outputs = []
# for token in model.generate(prompt=prompt, temp=temperature, top_k = top_k, top_p = top_p, max_tokens = max_new_tokens, streaming=True):
# outputs.append(token)
# yield "".join(outputs)
# async def generater(message, history, temperature, top_p, top_k):
# # 构建prompt
# prompt = ""
# for user_message, assistant_message in history:
# prompt += model.config["promptTemplate"].format(user_message)
# prompt += assistant_message
# prompt += model.config["promptTemplate"].format(message)
# # Debug: 打印最终的prompt以验证其正确性
# print(f"Final prompt: {prompt}")
# cmd = [
# main_path,
# "-m",os.path.join(model_path, model_name),
# "--prompt", prompt
# ]
# # 使用subprocess.Popen调用./main并流式读取输出
# process = subprocess.Popen(
# cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True
# )
# # 初始占位符输出
# yield "Generating response..."
# # 异步等待并处理输出
# try:
# while True:
# line = process.stdout.readline()
# if not line:
# break # 如果没有更多的输出,结束循环
# print(f"Generated line: {line.strip()}") # Debug: 打印生成的每行
# yield line
# except Exception as e:
# print(f"Error during generation: {e}")
# yield "Sorry, an error occurred while generating the response."
async def generater(message, history, temperature, top_p, top_k):
# 构建prompt
prompt = ""
for user_message, assistant_message in history:
prompt += model.config["promptTemplate"].format(user_message)
prompt += assistant_message
prompt += model.config["promptTemplate"].format(message)
# Debug: 打印最终的prompt以验证其正确性
print(f"Final prompt: {prompt}\n\n\n\n\n\n\n\n")
cmd = [
"./main", # 确保这个是可执行文件的正确路径
"-m", os.path.join(model_path, model_name),
"--prompt", prompt
]
# 创建异步子进程
process = await asyncio.create_subprocess_exec(
*cmd,
stdout=asyncio.subprocess.PIPE,
stderr=asyncio.subprocess.PIPE,
#text=True, # 这里设置text=True使得输出以字符串形式处理
)
# 初始占位符输出
yield "Generating response..."
# # 异步等待并逐字处理输出
# while True:
# char = await process.stdout.read(1) # 读取1字节
# if not char:
# break # 如果没有更多的输出,结束循环
# # 直接输出字符,这里假设输出是文本形式
# print(char, end='', flush=True) # 使用print来立即输出每个字符
# yield char
# while True:
# char = await process.stdout.read(1) # 读取1字节
# if not char:
# break # 如果没有更多的输出,结束循环
# # 将字节解码为字符串
# char_decoded = char.decode('utf-8')
# print(char_decoded, end='') # 使用print来立即输出每个字符
# yield "1"
# # 等待子进程结束
# await process.wait()
# 初始化一个空字节串用作缓冲区
buffer = b""
# 初始化一个空字符串用于累积解码的输出
accumulated_output = ""
while True:
# 尝试从stdout中读取更多的字节
more_bytes = await process.stdout.read(1)
if not more_bytes:
break # 没有更多的字节可以读取,结束循环
buffer += more_bytes # 将新读取的字节添加到缓冲区
try:
# 尝试解码整个缓冲区
decoded = buffer.decode('utf-8')
# 将成功解码的内容添加到累积的输出中
accumulated_output += decoded
# 输出累积的内容到屏幕上
print(f'\r{accumulated_output}', end='', flush=True)
yield accumulated_output
buffer = b"" # 清空缓冲区以接受新的输入
except UnicodeDecodeError:
# 解码失败,可能是因为字节不完整
# 继续循环,读取更多的字节
continue
# 循环结束后,处理缓冲区中剩余的字节
if buffer:
# 这里忽略解码错误,因为最后的字节可能不完整
remaining_output = buffer.decode('utf-8', errors='ignore')
accumulated_output += remaining_output
print(f'\r{accumulated_output}', end='', flush=True)
def vote(data: gr.LikeData):
if data.liked:
return
else:
return
chatbot = gr.Chatbot(avatar_images=('resourse/user-icon.png', 'resourse/chatbot-icon.png'),bubble_full_width = False)
additional_inputs=[
gr.Slider(
label="temperature",
value=0.5,
minimum=0.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic.",
),
gr.Slider(
label="top_p",
value=1.0,
minimum=0.0,
maximum=1.0,
step=0.01,
interactive=True,
info="0.1 means only the tokens comprising the top 10% probability mass are considered. Suggest set to 1 and use temperature. 1 means 100% and will disable it",
),
gr.Slider(
label="top_k",
value=40,
minimum=0,
maximum=1000,
step=1,
interactive=True,
info="limits candidate tokens to a fixed number after sorting by probability. Setting it higher than the vocabulary size deactivates this limit.",
)
]
iface = gr.ChatInterface(
fn = generater,
title=title,
description = description,
chatbot=chatbot,
additional_inputs=additional_inputs,
examples=[
["枸杞有什么疗效"],
["I've taken several courses of antibiotics for recurring infections, and now they seem less effective. Am I developing antibiotic resistance?"],
]
)
with gr.Blocks(css="resourse/style/custom.css") as demo:
chatbot.like(vote, None, None)
iface.render()
if __name__ == "__main__":
demo.queue(max_size=3).launch()