import gradio as gr from gpt4all import GPT4All from huggingface_hub import hf_hub_download import subprocess import asyncio title = "Apollo-7B-GGUF Run On CPU" description = """ 🔎 [Apollo-7B](https://huggingface.co/FreedomIntelligence/Apollo-7B) [GGUF format model](https://huggingface.co/FreedomIntelligence/Apollo-7B-GGUF) , 8-bit quantization balanced quality gguf version, running on CPU. Using [GitHub - llama.cpp](https://github.com/ggerganov/llama.cpp) [GitHub - gpt4all](https://github.com/nomic-ai/gpt4all). 🔨 Running on CPU-Basic free hardware. Suggest duplicating this space to run without a queue. Mistral does not support system prompt symbol (such as ```<>```) now, input your system prompt in the first message if you need. Learn more: [Guardrailing Mistral 7B](https://docs.mistral.ai/usage/guardrailing). """ """ [Model From TheBloke/Mistral-6B-Instruct-v0.1-GGUF](https://huggingface.co/FreedomIntelligence/Apollo-6B-GGUF) [Mistral-instruct-v0.1 System prompt](https://docs.mistral.ai/usage/guardrailing) """ model_path = "models" model_name = "Apollo-6B-q8_0.gguf" hf_hub_download(repo_id="FreedomIntelligence/Apollo-6B-GGUF", filename=model_name, local_dir=model_path, local_dir_use_symlinks=False) print("Start the model init process") model = model = GPT4All(model_name, model_path, allow_download = False, device="cpu") print("Finish the model init process") model.config["promptTemplate"] = "{0}" model.config["systemPrompt"] = "You are a multiligual AI doctor, your name is Apollo." model._is_chat_session_activated = False max_new_tokens = 2048 # def generater(message, history, temperature, top_p, top_k): # prompt = "" # for user_message, assistant_message in history: # prompt += model.config["promptTemplate"].format(user_message) # prompt += assistant_message + "" # prompt += model.config["promptTemplate"].format(message) # outputs = [] # for token in model.generate(prompt=prompt, temp=temperature, top_k = top_k, top_p = top_p, max_tokens = max_new_tokens, streaming=True): # outputs.append(token) # yield "".join(outputs) async def generater(message, history, temperature, top_p, top_k): # 构建prompt prompt = "" for user_message, assistant_message in history: prompt += model.config["promptTemplate"].format(user_message) prompt += assistant_message prompt += model.config["promptTemplate"].format(message) # Debug: 打印最终的prompt以验证其正确性 print(f"Final prompt: {prompt}") cmd = [ "./main", "-m", model_path+"/"+model_name, "--prompt", prompt ] # 使用subprocess.Popen调用./main并流式读取输出 process = subprocess.Popen( cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True ) # 初始占位符输出 yield "Generating response..." # 异步等待并处理输出 try: while True: line = process.stdout.readline() if not line: break # 如果没有更多的输出,结束循环 print(f"Generated line: {line.strip()}") # Debug: 打印生成的每行 yield line except Exception as e: print(f"Error during generation: {e}") yield "Sorry, an error occurred while generating the response." def vote(data: gr.LikeData): if data.liked: return else: return chatbot = gr.Chatbot(avatar_images=('resourse/user-icon.png', 'resourse/chatbot-icon.png'),bubble_full_width = False) additional_inputs=[ gr.Slider( label="temperature", value=0.5, minimum=0.0, maximum=2.0, step=0.05, interactive=True, info="Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic.", ), gr.Slider( label="top_p", value=1.0, minimum=0.0, maximum=1.0, step=0.01, interactive=True, info="0.1 means only the tokens comprising the top 10% probability mass are considered. Suggest set to 1 and use temperature. 1 means 100% and will disable it", ), gr.Slider( label="top_k", value=40, minimum=0, maximum=1000, step=1, interactive=True, info="limits candidate tokens to a fixed number after sorting by probability. Setting it higher than the vocabulary size deactivates this limit.", ) ] iface = gr.ChatInterface( fn = generater, title=title, description = description, chatbot=chatbot, additional_inputs=additional_inputs, examples=[ ["枸杞有什么疗效"], ["I've taken several courses of antibiotics for recurring infections, and now they seem less effective. Am I developing antibiotic resistance?"], ] ) with gr.Blocks(css="resourse/style/custom.css") as demo: chatbot.like(vote, None, None) iface.render() if __name__ == "__main__": demo.queue(max_size=3).launch()