import gradio as gr from gpt4all import GPT4All from huggingface_hub import hf_hub_download import subprocess import asyncio import os import stat title = "Apollo-6B-GGUF Run On CPU" description = """ 🔎 [Apollo-6B](https://huggingface.co/FreedomIntelligence/Apollo-6B) [GGUF format model](https://huggingface.co/FreedomIntelligence/Apollo-6B-GGUF) , 8-bit quantization balanced quality gguf version, running on CPU. Using [GitHub - llama.cpp](https://github.com/ggerganov/llama.cpp) [GitHub - gpt4all](https://github.com/nomic-ai/gpt4all). 🔨 Running on CPU-Basic free hardware. Suggest duplicating this space to run without a queue. """ """ [Model From FreedomIntelligence/Apollo-6B-GGUF](https://huggingface.co/FreedomIntelligence/Apollo-6B-GGUF) """ model_path = "models" model_name = "Apollo-6B-q8_0.gguf" hf_hub_download(repo_id="FreedomIntelligence/Apollo-6B-GGUF", filename=model_name, local_dir=model_path, local_dir_use_symlinks=False) current_dir = os.path.dirname(os.path.realpath(__file__)) main_path = os.path.join(current_dir, 'main') os.chmod(main_path, os.stat(main_path).st_mode | stat.S_IEXEC) print("Start the model init process") model = model = GPT4All(model_name, model_path, allow_download = False, device="cpu") print("Finish the model init process") model.config["promptTemplate"] = "{0}" model.config["systemPrompt"] = "You are a multiligual AI doctor, your name is Apollo." model._is_chat_session_activated = False max_new_tokens = 2048 # def generater(message, history, temperature, top_p, top_k): # prompt = "" # for user_message, assistant_message in history: # prompt += model.config["promptTemplate"].format(user_message) # prompt += assistant_message + "" # prompt += model.config["promptTemplate"].format(message) # outputs = [] # for token in model.generate(prompt=prompt, temp=temperature, top_k = top_k, top_p = top_p, max_tokens = max_new_tokens, streaming=True): # outputs.append(token) # yield "".join(outputs) # async def generater(message, history, temperature, top_p, top_k): # # 构建prompt # prompt = "" # for user_message, assistant_message in history: # prompt += model.config["promptTemplate"].format(user_message) # prompt += assistant_message # prompt += model.config["promptTemplate"].format(message) # # Debug: 打印最终的prompt以验证其正确性 # print(f"Final prompt: {prompt}") # cmd = [ # main_path, # "-m",os.path.join(model_path, model_name), # "--prompt", prompt # ] # # 使用subprocess.Popen调用./main并流式读取输出 # process = subprocess.Popen( # cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True # ) # # 初始占位符输出 # yield "Generating response..." # # 异步等待并处理输出 # try: # while True: # line = process.stdout.readline() # if not line: # break # 如果没有更多的输出,结束循环 # print(f"Generated line: {line.strip()}") # Debug: 打印生成的每行 # yield line # except Exception as e: # print(f"Error during generation: {e}") # yield "Sorry, an error occurred while generating the response." async def generater(message, history, temperature, top_p, top_k): # 构建prompt prompt = "" for user_message, assistant_message in history: prompt += model.config["promptTemplate"].format(user_message) prompt += assistant_message prompt += model.config["promptTemplate"].format(message) # Debug: 打印最终的prompt以验证其正确性 print(f"Final prompt: {prompt}\n\n\n\n\n\n\n\n") cmd = [ "./main", # 确保这个是可执行文件的正确路径 "-m", os.path.join(model_path, model_name), "--prompt", prompt ] # 创建异步子进程 process = await asyncio.create_subprocess_exec( *cmd, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE, #text=True, # 这里设置text=True使得输出以字符串形式处理 ) # 初始占位符输出 yield "Generating response..." # # 异步等待并逐字处理输出 # while True: # char = await process.stdout.read(1) # 读取1字节 # if not char: # break # 如果没有更多的输出,结束循环 # # 直接输出字符,这里假设输出是文本形式 # print(char, end='', flush=True) # 使用print来立即输出每个字符 # yield char # while True: # char = await process.stdout.read(1) # 读取1字节 # if not char: # break # 如果没有更多的输出,结束循环 # # 将字节解码为字符串 # char_decoded = char.decode('utf-8') # print(char_decoded, end='') # 使用print来立即输出每个字符 # yield "1" # # 等待子进程结束 # await process.wait() # 初始化一个空字节串用作缓冲区 buffer = b"" # 初始化一个空字符串用于累积解码的输出 accumulated_output = "" while True: # 尝试从stdout中读取更多的字节 more_bytes = await process.stdout.read(1) if not more_bytes: break # 没有更多的字节可以读取,结束循环 buffer += more_bytes # 将新读取的字节添加到缓冲区 try: # 尝试解码整个缓冲区 decoded = buffer.decode('utf-8') # 将成功解码的内容添加到累积的输出中 accumulated_output += decoded # 输出累积的内容到屏幕上 print(f'\r{accumulated_output}', end='', flush=True) yield accumulated_output buffer = b"" # 清空缓冲区以接受新的输入 except UnicodeDecodeError: # 解码失败,可能是因为字节不完整 # 继续循环,读取更多的字节 continue # 循环结束后,处理缓冲区中剩余的字节 if buffer: # 这里忽略解码错误,因为最后的字节可能不完整 remaining_output = buffer.decode('utf-8', errors='ignore') accumulated_output += remaining_output print(f'\r{accumulated_output}', end='', flush=True) def vote(data: gr.LikeData): if data.liked: return else: return chatbot = gr.Chatbot(avatar_images=('resourse/user-icon.png', 'resourse/chatbot-icon.png'),bubble_full_width = False) additional_inputs=[ gr.Slider( label="temperature", value=0.5, minimum=0.0, maximum=2.0, step=0.05, interactive=True, info="Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic.", ), gr.Slider( label="top_p", value=1.0, minimum=0.0, maximum=1.0, step=0.01, interactive=True, info="0.1 means only the tokens comprising the top 10% probability mass are considered. Suggest set to 1 and use temperature. 1 means 100% and will disable it", ), gr.Slider( label="top_k", value=40, minimum=0, maximum=1000, step=1, interactive=True, info="limits candidate tokens to a fixed number after sorting by probability. Setting it higher than the vocabulary size deactivates this limit.", ) ] iface = gr.ChatInterface( fn = generater, title=title, description = description, chatbot=chatbot, additional_inputs=additional_inputs, examples=[ ["枸杞有什么疗效"], ["I've taken several courses of antibiotics for recurring infections, and now they seem less effective. Am I developing antibiotic resistance?"], ] ) with gr.Blocks(css="resourse/style/custom.css") as demo: chatbot.like(vote, None, None) iface.render() if __name__ == "__main__": demo.queue(max_size=3).launch()