neonwatty commited on
Commit
798c22f
1 Parent(s): 4e582b3

Upload 16 files

Browse files
meme_search/.DS_Store ADDED
Binary file (6.15 kB). View file
 
meme_search/__init__.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ base_dir = os.path.dirname(os.path.abspath(__file__))
4
+ meme_search_root_dir = os.path.dirname(base_dir)
5
+
6
+ vector_db_path = meme_search_root_dir + "/data/dbs/memes.faiss"
7
+ sqlite_db_path = meme_search_root_dir + "/data/dbs/memes.db"
8
+
9
+ from meme_search.data_puller import pull_demo_data
10
+ pull_demo_data()
meme_search/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (435 Bytes). View file
 
meme_search/__pycache__/data_puller.cpython-310.pyc ADDED
Binary file (4.43 kB). View file
 
meme_search/app.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from meme_search import base_dir, sqlite_db_path, vector_db_path
2
+ from meme_search.utilities.query import complete_query
3
+ import streamlit as st
4
+
5
+ st.set_page_config(page_title="Meme Search")
6
+
7
+
8
+ # search bar taken from --> https://discuss.streamlit.io/t/creating-a-nicely-formatted-search-field/1804/2
9
+ def local_css(file_name):
10
+ with open(file_name) as f:
11
+ st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
12
+
13
+
14
+ def remote_css(url):
15
+ st.markdown(f'<link href="{url}" rel="stylesheet">', unsafe_allow_html=True)
16
+
17
+
18
+ local_css(base_dir + "/style.css")
19
+ remote_css("https://fonts.googleapis.com/icon?family=Material+Icons")
20
+
21
+ # icon("search")
22
+ buff, col, buff2 = st.columns([1, 4, 1])
23
+
24
+ selected = col.text_input(label="search for meme", placeholder="search for a meme")
25
+ if selected:
26
+ results = complete_query(selected, vector_db_path, sqlite_db_path)
27
+ img_paths = [v["img_path"] for v in results]
28
+ for result in results:
29
+ with col.container(border=True):
30
+ st.image(
31
+ result["img_path"],
32
+ output_format="auto",
33
+ caption=f'{result["full_description"]} (query distance = {result["distance"]})',
34
+ )
meme_search/data_puller.py ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import requests
3
+
4
+ def download_file_from_github(repo_url, file_path, save_dir):
5
+ raw_url = f"https://raw.githubusercontent.com/{repo_url}/main/{file_path}"
6
+ response = requests.get(raw_url)
7
+
8
+ if response.status_code == 200:
9
+ if not os.path.exists(save_dir):
10
+ os.makedirs(save_dir)
11
+ save_path = os.path.join(save_dir, os.path.basename(file_path))
12
+ with open(save_path, 'wb') as file:
13
+ file.write(response.content)
14
+
15
+ print(f"File downloaded successfully: {save_path}")
16
+ else:
17
+ print(f"Failed to download file. Status code: {response.status_code}")
18
+
19
+
20
+ def list_files_in_github_directory(owner, repo, directory_path):
21
+ url = f"https://api.github.com/repos/{owner}/{repo}/contents/{directory_path}"
22
+ response = requests.get(url)
23
+
24
+ if response.status_code == 200:
25
+ files = response.json()
26
+ names = []
27
+ for file in files:
28
+ names.append(file["name"])
29
+ return names
30
+ else:
31
+ print(f"Failed to retrieve directory contents. Status code: {response.status_code}")
32
+
33
+
34
+ def collect_repo_file_names():
35
+ owner = "neonwatty"
36
+ repo = "meme_search"
37
+ input_path = "/data/input"
38
+ input_names = list_files_in_github_directory(owner, repo, input_path)
39
+
40
+ db_path = "/data/dbs"
41
+ db_names = list_files_in_github_directory(owner, repo, db_path)
42
+ db_names = [v for v in db_names if ".db" in v or ".faiss" in v]
43
+ return input_path, db_path, input_names, db_names
44
+
45
+ def check_directory_exists(directory_path):
46
+ return os.path.isdir(directory_path)
47
+
48
+ def create_directory(directory_path):
49
+ try:
50
+ os.makedirs(directory_path, exist_ok=True)
51
+ print(f"Directory '{directory_path}' created successfully.")
52
+ except OSError as error:
53
+ print(f"Error creating directory '{directory_path}': {error}")
54
+
55
+ def check_files_in_directory(directory_path, file_list):
56
+ missing_files = []
57
+ for file_name in file_list:
58
+ if not os.path.isfile(os.path.join(directory_path, file_name)):
59
+ missing_files.append(file_name)
60
+ return missing_files
61
+
62
+ def list_files_in_directory(directory_path):
63
+ try:
64
+ files = [f for f in os.listdir(directory_path) if os.path.isfile(os.path.join(directory_path, f))]
65
+ return files
66
+ except OSError as error:
67
+ print(f"Error accessing directory '{directory_path}': {error}")
68
+ return []
69
+
70
+ def delete_file(directory_path, file_name):
71
+ try:
72
+ file_path = os.path.join(directory_path, file_name)
73
+ if os.path.isfile(file_path):
74
+ os.remove(file_path)
75
+ print(f"File '{file_name}' deleted successfully.")
76
+ else:
77
+ print(f"File '{file_name}' does not exist in the directory '{directory_path}'.")
78
+ except OSError as error:
79
+ print(f"Error deleting file '{file_name}': {error}")
80
+
81
+ def pull_demo_data():
82
+ repo_url = "neonwatty/meme_search"
83
+ input_path, db_path, repo_input_names, repo_db_names = collect_repo_file_names()
84
+ if not check_directory_exists("." + input_path):
85
+ create_directory("." + input_path)
86
+ for name in repo_input_names:
87
+ file_path = input_path + "/" + name
88
+ download_file_from_github(repo_url, file_path, "." + input_path)
89
+ else:
90
+ local_input_files = list_files_in_directory("." + input_path)
91
+ input_files_to_pull = [item for item in repo_input_names if item not in local_input_files]
92
+ input_files_to_delete = [item for item in local_input_files if item not in repo_input_names]
93
+
94
+ for name in input_files_to_delete:
95
+ delete_file("." + input_path, name)
96
+ for name in input_files_to_pull:
97
+ file_path = input_path + "/" + name
98
+ download_file_from_github(repo_url, file_path, "." + input_path)
99
+
100
+ if not check_directory_exists("." + db_path):
101
+ create_directory("." + db_path)
102
+ repo_url = "neonwatty/meme_search"
103
+ for name in repo_db_names:
104
+ file_path = db_path + "/" + name
105
+ download_file_from_github(repo_url, file_path, "." + db_path)
106
+ else:
107
+ local_db_files = list_files_in_directory("." + db_path)
108
+ db_files_to_pull = [item for item in repo_db_names if item not in local_db_files]
109
+ db_files_to_delete = [item for item in local_db_files if item not in repo_db_names]
110
+ for name in db_files_to_delete:
111
+ delete_file("." + db_path, name)
112
+ for name in db_files_to_pull:
113
+ file_path = db_path + "/" + name
114
+ download_file_from_github(repo_url, file_path, "." + db_path)
meme_search/style.css ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ body {
2
+ color: #fff;
3
+ background-color: #4F8BF9;
4
+ }
5
+
6
+ .stButton>button {
7
+ color: #4F8BF9;
8
+ border-radius: 50%;
9
+ height: 3em;
10
+ width: 3em;
11
+ }
12
+
13
+ .stTextInput>div>div>input {
14
+ color: #4F8BF9;
15
+ }
meme_search/utilities/__init__.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from sentence_transformers import SentenceTransformer
3
+
4
+ model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
5
+ utilities_base_dir = os.path.dirname(os.path.abspath(__file__))
6
+ meme_search_dir = os.path.dirname(utilities_base_dir)
7
+ meme_search_root_dir = os.path.dirname(meme_search_dir)
8
+
9
+ vector_db_path = meme_search_root_dir + "/data/dbs/memes.faiss"
10
+ sqlite_db_path = meme_search_root_dir + "/data/dbs/memes.db"
meme_search/utilities/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (538 Bytes). View file
 
meme_search/utilities/__pycache__/query.cpython-310.pyc ADDED
Binary file (2.66 kB). View file
 
meme_search/utilities/chunks.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+
3
+
4
+ def clean_word(text: str) -> str:
5
+ # clean input text - keeping only lower case letters, numbers, punctuation, and single quote symbols
6
+ return re.sub(" +", " ", re.compile("[^a-z0-9,.!?']").sub(" ", text.lower().strip()))
7
+
8
+
9
+ def chunk_text(text: str) -> list:
10
+ # split and clean input text
11
+ text_split = clean_word(text).split(" ")
12
+ text_split = [v for v in text_split if len(v) > 0]
13
+
14
+ # use two pointers to create chunks
15
+ chunk_size = 4
16
+ overlap_size = 2
17
+
18
+ # create next chunk by moving right pointer until chunk_size is reached or line_number changes by more than 1 or end of word_sequence is reached
19
+ left_pointer = 0
20
+ right_pointer = chunk_size - 1
21
+ chunks = []
22
+
23
+ if right_pointer >= len(text_split):
24
+ chunks = [" ".join(text_split)]
25
+ else:
26
+ while right_pointer < len(text_split):
27
+ # check if chunk_size has been reached
28
+ # create chunk
29
+ chunk = text_split[left_pointer : right_pointer + 1]
30
+
31
+ # move left pointer
32
+ left_pointer += chunk_size - overlap_size
33
+
34
+ # move right pointer
35
+ right_pointer += chunk_size - overlap_size
36
+
37
+ # store chunk
38
+ chunks.append(" ".join(chunk))
39
+
40
+ # check if there is final chunk
41
+ if len(text_split[left_pointer:]) > 0:
42
+ last_chunk = text_split[left_pointer:]
43
+ chunks.append(" ".join(last_chunk))
44
+
45
+ # insert the full text
46
+ if len(chunks) > 1:
47
+ chunks.insert(0, text.lower())
48
+ return chunks
49
+
50
+
51
+ # loop over each meme's moondream based text descriptor and create a short dict containing its full and chunked text
52
+ def create_all_img_chunks(img_paths: list, answers: list) -> list:
53
+ try:
54
+ print("STARTING: create_all_img_chunks")
55
+ img_chunks = []
56
+ for ind, img_path in enumerate(img_paths):
57
+ moondream_meme_text = answers[ind]
58
+ moondream_chunks = chunk_text(moondream_meme_text)
59
+ for chunk in moondream_chunks:
60
+ entry = {}
61
+ entry["img_path"] = img_path
62
+ entry["chunk"] = chunk
63
+ img_chunks.append(entry)
64
+ print("SUCCESS: create_all_img_chunks ran successfully")
65
+ return img_chunks
66
+ except Exception as e:
67
+ print(f"FAILURE: create_all_img_chunks failed with exception {e}")
68
+ raise e
meme_search/utilities/create.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sqlite3
2
+ import faiss
3
+ from meme_search.utilities import model
4
+ from meme_search.utilities.imgs import collect_img_paths
5
+ from meme_search.utilities.text_extraction import extract_text_from_imgs
6
+ from meme_search.utilities.chunks import create_all_img_chunks
7
+ from meme_search.utilities import vector_db_path, sqlite_db_path
8
+
9
+
10
+ def create_chunk_db(img_chunks: list, db_filepath: str) -> None:
11
+ # Create a lookup table for chunks
12
+ conn = sqlite3.connect(db_filepath)
13
+ cursor = conn.cursor()
14
+
15
+ # Create the table - delete old table if it exists
16
+ cursor.execute("DROP TABLE IF EXISTS chunks_reverse_lookup")
17
+
18
+ # Create the table - alias rowid as chunk_index
19
+ cursor.execute("""
20
+ CREATE TABLE IF NOT EXISTS chunks_reverse_lookup (
21
+ chunk_index INTEGER PRIMARY KEY,
22
+ img_path TEXT,
23
+ chunk TEXT
24
+ );
25
+ """)
26
+
27
+ # Insert data into the table
28
+ for chunk_index, entry in enumerate(img_chunks):
29
+ img_path = entry["img_path"]
30
+ chunk = entry["chunk"]
31
+ cursor.execute(
32
+ "INSERT INTO chunks_reverse_lookup (chunk_index, img_path, chunk) VALUES (?, ?, ?)",
33
+ (chunk_index, img_path, chunk),
34
+ )
35
+
36
+ conn.commit()
37
+ conn.close()
38
+
39
+
40
+ def create_vector_db(chunks: list, db_file_path: str) -> None:
41
+ # embed inputs
42
+ embeddings = model.encode(chunks)
43
+
44
+ # dump all_embeddings to faiss index
45
+ index = faiss.IndexFlatL2(embeddings.shape[1])
46
+ index.add(embeddings)
47
+
48
+ # write index to disk
49
+ faiss.write_index(index, db_file_path)
50
+
51
+
52
+ def complete_create_dbs(img_chunks: list, vector_db_path: str, sqlite_db_path: str) -> None:
53
+ try:
54
+ print("STARTING: complete_create_dbs")
55
+
56
+ # create db for img_chunks
57
+ create_chunk_db(img_chunks, sqlite_db_path)
58
+
59
+ # create vector embedding db for chunks
60
+ chunks = [v["chunk"] for v in img_chunks]
61
+ create_vector_db(chunks, vector_db_path)
62
+ print("SUCCESS: complete_create_dbs succeeded")
63
+ except Exception as e:
64
+ print(f"FAILURE: complete_create_dbs failed with exception {e}")
65
+
66
+
67
+ def process():
68
+ all_img_paths = collect_img_paths()
69
+ moondream_answers = extract_text_from_imgs(all_img_paths)
70
+ img_chunks = create_all_img_chunks(all_img_paths, moondream_answers)
71
+ complete_create_dbs(img_chunks, vector_db_path, sqlite_db_path)
72
+
73
+
74
+ if __name__ == "__main__":
75
+ process()
meme_search/utilities/imgs.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from meme_search.utilities import meme_search_root_dir
3
+
4
+ allowable_extensions = ["jpg", "jpeg", "png"]
5
+
6
+
7
+ def collect_img_paths() -> list:
8
+ try:
9
+ img_dir = meme_search_root_dir + "/data/input"
10
+ print("STARTING: collect_img_paths")
11
+
12
+ all_img_paths = [os.path.join(img_dir, name) for name in os.listdir(img_dir) if name.split(".")[-1] in allowable_extensions]
13
+ all_img_paths = sorted(all_img_paths)
14
+
15
+ print(f"SUCCESS: collect_img_paths ran successfully - image paths loaded from '{img_dir}'")
16
+ return all_img_paths
17
+ except Exception as e:
18
+ print(f"FAILURE: collect_img_paths failed with img_dir {img_dir} with exception {e}")
19
+ raise e
meme_search/utilities/query.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import faiss
2
+ import sqlite3
3
+ import numpy as np
4
+ from typing import Tuple
5
+ import argparse
6
+ from meme_search.utilities import model
7
+ from meme_search.utilities import vector_db_path, sqlite_db_path
8
+
9
+
10
+ def query_vector_db(query: str, db_file_path: str, k: int = 10) -> Tuple[list, list]:
11
+ # connect to db
12
+ faiss_index = faiss.read_index(db_file_path)
13
+
14
+ # test
15
+ encoded_query = np.expand_dims(model.encode(query), axis=0)
16
+
17
+ # query db
18
+ distances, indices = faiss_index.search(encoded_query, k)
19
+ distances = distances.tolist()[0]
20
+ indices = indices.tolist()[0]
21
+ return distances, indices
22
+
23
+
24
+ def query_sqlite_db(indices: list, db_filepath: str) -> list:
25
+ conn = sqlite3.connect(db_filepath)
26
+ cursor = conn.cursor()
27
+ query = f"SELECT * FROM chunks_reverse_lookup WHERE chunk_index IN {tuple(indices)}"
28
+ cursor.execute(query)
29
+ rows = cursor.fetchall()
30
+ rows = [{"index": row[0], "img_path": row[1], "chunk": row[2]} for row in rows]
31
+ rows = sorted(rows, key=lambda x: indices.index(x["index"])) # re-sort rows according to input indices
32
+ for row in rows:
33
+ query = f"SELECT * FROM chunks_reverse_lookup WHERE chunk_index=(SELECT MIN(chunk_index) FROM chunks_reverse_lookup WHERE img_path='{row['img_path']}')"
34
+ cursor.execute(query)
35
+ full_description_row = cursor.fetchall()
36
+ row["full_description"] = full_description_row[0][2]
37
+ conn.close()
38
+ return rows
39
+
40
+
41
+ def complete_query(query: str, vector_db_path: str, sqlite_db_path: str, k: int = 10) -> list:
42
+ try:
43
+ print("STARTING: complete_query")
44
+
45
+ # query vector_db, first converting input query to embedding
46
+ distances, indices = query_vector_db(query, vector_db_path, k=k)
47
+
48
+ # use indices to query sqlite db containing chunk data
49
+ img_chunks = query_sqlite_db(indices, sqlite_db_path) # bump up indices by 1 since sqlite row index starts at 1 not 0
50
+
51
+ # map indices back to correct image in img_chunks
52
+ imgs_seen = []
53
+ unique_img_entries = []
54
+ for ind, entry in enumerate(img_chunks):
55
+ if entry["img_path"] in imgs_seen:
56
+ continue
57
+ else:
58
+ entry["distance"] = round(distances[ind], 2)
59
+ unique_img_entries.append(entry)
60
+ imgs_seen.append(entry["img_path"])
61
+ print("SUCCESS: complete_query succeeded")
62
+ return unique_img_entries
63
+ except Exception as e:
64
+ print(f"FAILURE: complete_query failed with exception {e}")
65
+ raise e
66
+
67
+
68
+ if __name__ == "__main__":
69
+ parser = argparse.ArgumentParser()
70
+ parser.add_argument("--query", dest="query", type=str, help="Add query")
71
+ args = parser.parse_args()
72
+ query = args.query
73
+
74
+ print(query)
75
+ results = complete_query(query, vector_db_path, sqlite_db_path)
76
+ print(results)
meme_search/utilities/text_extraction.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoModelForCausalLM, AutoTokenizer
2
+ from PIL import Image
3
+ import transformers
4
+
5
+ transformers.logging.set_verbosity_error()
6
+
7
+
8
+ def prompt_moondream(img_path: str, prompt: str) -> str:
9
+ # copied from moondream demo readme --> https://github.com/vikhyat/moondream/tree/main
10
+ model_id = "vikhyatk/moondream2"
11
+ revision = "2024-05-20"
12
+ model = AutoModelForCausalLM.from_pretrained(
13
+ model_id,
14
+ trust_remote_code=True,
15
+ revision=revision,
16
+ )
17
+ tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision)
18
+ image = Image.open(img_path)
19
+ enc_image = model.encode_image(image)
20
+ moondream_response = model.answer_question(enc_image, prompt, tokenizer)
21
+ return moondream_response
22
+
23
+
24
+ def extract_text_from_imgs(img_paths: list) -> list:
25
+ try:
26
+ print("STARTING: extract_text_from_imgs")
27
+ prompt = "Describe this image."
28
+ answers = []
29
+ for img_path in img_paths:
30
+ print(f"INFO: prompting moondream for a description of image: '{img_path}'")
31
+ answer = prompt_moondream(img_path, prompt)
32
+ answers.append(answer)
33
+ print("DONE!")
34
+ print("SUCCESS: extract_text_from_imgs succeeded")
35
+ return answers
36
+ except Exception as e:
37
+ print(f"FAILURE: extract_text_from_imgs failed with exception {e}")
38
+ raise e
requirements.txt ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ numpy
2
+ matplotlib
3
+ accelerate==0.25.0
4
+ huggingface-hub==0.20.1
5
+ Pillow==10.1.0
6
+ torch==2.1.2
7
+ torchvision==0.16.2
8
+ transformers==4.36.2
9
+ einops==0.7.0
10
+ sentence-transformers==2.2.2
11
+ faiss-cpu
12
+ streamlit
13
+ requests