Spaces:
Sleeping
Sleeping
clean & refactor components + add doc
Browse files- app.py +89 -438
- datatest/curation_rapid_global.zip +0 -3
- datatest/{test.zip β exemple_IAA_annotations.zip} +2 -2
- n4a_analytics_lib/__pycache__/analytics.cpython-38.pyc +0 -0
- n4a_analytics_lib/__pycache__/metrics_utils.cpython-38.pyc +0 -0
- n4a_analytics_lib/__pycache__/project.cpython-38.pyc +0 -0
- n4a_analytics_lib/__pycache__/st_components.cpython-38.pyc +0 -0
- n4a_analytics_lib/analytics.py +106 -15
- n4a_analytics_lib/constants.py +76 -1
- n4a_analytics_lib/metrics_utils.py +31 -26
- n4a_analytics_lib/project.py +54 -39
- n4a_analytics_lib/st_components.py +192 -16
app.py
CHANGED
@@ -1,451 +1,102 @@
|
|
1 |
#!/usr/bin/env python3
|
2 |
# -*- coding:utf-8 -*-
|
3 |
-
import requests.exceptions
|
4 |
-
import zipfile
|
5 |
|
6 |
import streamlit as st
|
7 |
-
from streamlit.components.v1 import html
|
8 |
-
from n4a_analytics_lib.analytics import (GlobalStatistics, IaaStatistics)
|
9 |
-
from n4a_analytics_lib.constants import (DESCRIPTION)
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
#
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
col2.markdown(f"""
|
57 |
-
### BASELINE TEXT: {baseline_text.name}
|
58 |
-
|
59 |
-
- sentences: {baseline_analyzer[0]}
|
60 |
-
- words: {baseline_analyzer[1]}
|
61 |
-
- characters: {baseline_analyzer[2]}
|
62 |
-
""")
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
#print(project_analyzed.annotations_per_coders)
|
68 |
-
|
69 |
-
commune_mentions = [l for i,j in project_analyzed.mentions_per_coder.items() for l in j]
|
70 |
-
commune_mentions = list(dict.fromkeys(commune_mentions))
|
71 |
-
#print(commune_mentions)
|
72 |
-
#print(project_analyzed.annotations)
|
73 |
-
#print(project_analyzed.labels_per_coder)
|
74 |
-
import pandas as pd
|
75 |
-
from collections import defaultdict, Counter
|
76 |
-
from itertools import combinations
|
77 |
-
import seaborn as sn
|
78 |
-
import matplotlib as plt
|
79 |
-
import matplotlib.pyplot as pylt
|
80 |
-
|
81 |
-
dicts_coders = []
|
82 |
-
for coder, annotations in project_analyzed.annotations_per_coders.items():
|
83 |
-
nombre_annotations = []
|
84 |
-
# print(f'* {coder}')
|
85 |
-
for annotation, label in annotations.items():
|
86 |
-
nombre_annotations.append(label)
|
87 |
-
# print(f"Nombre total d'annotations : {len(nombre_annotations)}")
|
88 |
-
dict_coder = dict(Counter(nombre_annotations))
|
89 |
-
dicts_coders.append(dict_coder)
|
90 |
-
# print(f'==========================')
|
91 |
-
|
92 |
-
labels = [label for label in dicts_coders[0]]
|
93 |
-
|
94 |
-
from n4a_analytics_lib.metrics_utils import interpret_kappa, fleiss_kappa_function, cohen_kappa_function
|
95 |
-
df = pd.DataFrame(project_analyzed.annotations_per_coders, index=commune_mentions)
|
96 |
-
|
97 |
-
for ann in project_analyzed.annotators:
|
98 |
-
df[ann] = 'None'
|
99 |
-
for mention, value in project_analyzed.annotations_per_coders[ann].items():
|
100 |
-
df.loc[mention, ann] = value
|
101 |
-
|
102 |
-
total_annotations = len(df)
|
103 |
-
|
104 |
-
# print(f'* Total des annotations : {total_annotations}')
|
105 |
-
|
106 |
-
df_n = df.apply(pd.Series.value_counts, 1).fillna(0).astype(int)
|
107 |
-
matrix = df_n.values
|
108 |
-
|
109 |
-
pairs = list(combinations(project_analyzed.annotations_per_coders, 2))
|
110 |
-
|
111 |
-
# Display in app
|
112 |
-
#cont_kappa = st.container()
|
113 |
-
st.title("Inter-Annotator Agreement (IAA) results")
|
114 |
-
#tab1, tab2, tab3, tab4, tab5 = st.tabs(
|
115 |
-
# ["π IAA metrics", "π IAA Metrics Legend", "βοΈ Agree annotations", "β Disagree annotations",
|
116 |
-
# "π·οΈ Global Labels Statistics"])
|
117 |
-
st.markdown("## π IAA metrics")
|
118 |
-
col1_kappa, col2_kappa = st.columns(2)
|
119 |
-
col1_kappa.subheader("Fleiss Kappa (global score for group):")
|
120 |
-
|
121 |
-
|
122 |
-
col1_kappa.markdown(interpret_kappa(round(fleiss_kappa_function(matrix), 2)), unsafe_allow_html=True)
|
123 |
-
col1_kappa.subheader("Cohen Kappa Annotators Matrix (score between annotators):")
|
124 |
-
# tab1.dataframe(df)
|
125 |
-
data = []
|
126 |
-
for coder_1, coder_2 in pairs:
|
127 |
-
cohen_function = cohen_kappa_function(project_analyzed.labels_per_coder[coder_1], project_analyzed.labels_per_coder[coder_2])
|
128 |
-
data.append(((coder_1, coder_2), cohen_function))
|
129 |
-
col1_kappa.markdown(f"* {coder_1} <> {coder_2} : {interpret_kappa(cohen_function)}", unsafe_allow_html=True)
|
130 |
-
# print(f"* {coder_1} <> {coder_2} : {cohen_function}")
|
131 |
-
|
132 |
-
intermediary = defaultdict(Counter)
|
133 |
-
for (src, tgt), count in data:
|
134 |
-
intermediary[src][tgt] = count
|
135 |
-
|
136 |
-
letters = sorted({key for inner in intermediary.values() for key in inner} | set(intermediary.keys()))
|
137 |
-
|
138 |
-
confusion_matrix = [[intermediary[src][tgt] for tgt in letters] for src in letters]
|
139 |
-
import numpy as np
|
140 |
-
|
141 |
-
df_cm = pd.DataFrame(confusion_matrix, letters, letters)
|
142 |
-
mask = df_cm.values == 0
|
143 |
-
sn.set(font_scale=0.7) # for label size
|
144 |
-
colors = ["#e74c3c", "#f39c12", "#f4d03f", "#5dade2", "#58d68d", "#28b463"]
|
145 |
-
width = st.slider("matrix width", 1, 10, 14)
|
146 |
-
height = st.slider("matrix height", 1, 10, 4)
|
147 |
-
fig, ax = pylt.subplots(figsize=(width, height))
|
148 |
-
sn.heatmap(df_cm, cmap=colors, annot=True, mask=mask, annot_kws={"size": 7}, vmin=0, vmax=1, ax=ax) # font size
|
149 |
-
# plt.show()
|
150 |
-
st.pyplot(ax.figure)
|
151 |
-
col2_kappa.markdown("""
|
152 |
-
<div>
|
153 |
-
<div id="legend" style="right: 70em;">
|
154 |
-
<h3>π IAA Metrics Legend</h3>
|
155 |
-
<table>
|
156 |
-
<thead>
|
157 |
-
<tr>
|
158 |
-
<th
|
159 |
-
colspan="2"> Kappa
|
160 |
-
interpretation
|
161 |
-
legend </th>
|
162 |
-
</tr>
|
163 |
-
</thead>
|
164 |
-
<tbody>
|
165 |
-
<tr>
|
166 |
-
<td> Kappa
|
167 |
-
score(k) </td>
|
168 |
-
<td>Agreement</td>
|
169 |
-
</tr>
|
170 |
-
<tr
|
171 |
-
style = "background-color: #e74c3c;">
|
172 |
-
<td> k < 0 </td>
|
173 |
-
<td> Less
|
174 |
-
chance
|
175 |
-
agreement </td>
|
176 |
-
</tr>
|
177 |
-
<tr
|
178 |
-
style = "background-color: #f39c12;">
|
179 |
-
<td> 0.01 < k < 0.20 </td>
|
180 |
-
<td> Slight
|
181 |
-
agreement </td>
|
182 |
-
</tr>
|
183 |
-
<tr
|
184 |
-
style = "background-color: #f4d03f;">
|
185 |
-
<td> 0.21 < k < 0.40 </td>
|
186 |
-
<td> Fair
|
187 |
-
agreement </td>
|
188 |
-
</tr>
|
189 |
-
<tr
|
190 |
-
style = "background-color: #5dade2;">
|
191 |
-
<td> 0.41 < k < 0.60 </td>
|
192 |
-
<td> Moderate
|
193 |
-
agreement </td>
|
194 |
-
</tr>
|
195 |
-
<tr
|
196 |
-
style = "background-color: #58d68d;">
|
197 |
-
<td> 0.61 < k < 0.80 </td>
|
198 |
-
<td> Substantial
|
199 |
-
agreement </td>
|
200 |
-
</tr>
|
201 |
-
<tr
|
202 |
-
style = "background-color: #28b463;">
|
203 |
-
<td> 0.81 < k < 0.99 </td>
|
204 |
-
<td> Almost
|
205 |
-
perfect
|
206 |
-
agreement </td>
|
207 |
-
</tr>
|
208 |
-
</tbody>
|
209 |
-
</table></div></div>"""
|
210 |
-
|
211 |
-
, unsafe_allow_html = True)
|
212 |
-
|
213 |
-
|
214 |
-
## commune
|
215 |
-
@st.cache
|
216 |
-
def convert_df(df_ex):
|
217 |
-
return df_ex.to_csv(encoding="utf-8").encode('utf-8')
|
218 |
-
|
219 |
-
|
220 |
-
## Agree part
|
221 |
-
|
222 |
-
columns_to_compare = project_analyzed.annotators
|
223 |
-
|
224 |
-
|
225 |
-
def check_all_equal(iterator):
|
226 |
-
return len(set(iterator)) <= 1
|
227 |
-
|
228 |
-
|
229 |
-
df_agree = df[df[columns_to_compare].apply(lambda row: check_all_equal(row), axis=1)]
|
230 |
-
total_unanime = len(df_agree)
|
231 |
-
|
232 |
-
csv_agree = convert_df(df_agree)
|
233 |
-
|
234 |
-
st.subheader("βοΈ Agree annotations")
|
235 |
-
st.markdown(f"{total_unanime} / {len(df)} annotations ({round((total_unanime / len(df)) * 100, 2)} %)")
|
236 |
-
st.download_button(
|
237 |
-
"Press to Download CSV",
|
238 |
-
csv_agree,
|
239 |
-
"csv_annotators_agree.csv",
|
240 |
-
"text/csv",
|
241 |
-
key='download-csv-1'
|
242 |
)
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
## Disagree part
|
247 |
-
|
248 |
-
def check_all_not_equal(iterator):
|
249 |
-
return len(set(iterator)) > 1
|
250 |
-
|
251 |
-
|
252 |
-
df_disagree = df[df[columns_to_compare].apply(lambda row: check_all_not_equal(row), axis=1)]
|
253 |
-
total_desaccord = len(df_disagree)
|
254 |
-
csv_disagree = convert_df(df_disagree)
|
255 |
-
st.subheader("β Disagree annotations")
|
256 |
-
st.markdown(
|
257 |
-
f"{total_desaccord} / {len(df)} annotations ({round((total_desaccord / len(df)) * 100, 2)} %)")
|
258 |
-
st.download_button(
|
259 |
-
"Press to Download CSV",
|
260 |
-
csv_disagree,
|
261 |
-
"csv_annotators_disagree.csv",
|
262 |
-
"text/csv",
|
263 |
-
key='download-csv-2'
|
264 |
)
|
265 |
-
st.dataframe(df_disagree)
|
266 |
-
|
267 |
-
|
268 |
-
## alignement chart labels
|
269 |
-
def count_total_annotations_label(dataframe, labels):
|
270 |
-
pairs = []
|
271 |
-
for label in labels:
|
272 |
-
total = dataframe.astype(object).eq(label).any(1).sum()
|
273 |
-
pairs.append((label, total))
|
274 |
-
return pairs
|
275 |
-
|
276 |
-
|
277 |
-
totals_annotations_per_labels = count_total_annotations_label(df, labels)
|
278 |
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
explode=my_explode)
|
307 |
-
axes[counter].set_title(t[0])
|
308 |
-
axes[counter].axis('equal')
|
309 |
-
counter += 1
|
310 |
-
fig.set_facecolor("white")
|
311 |
-
fig.legend(labels=my_labels, loc="center right", borderaxespad=0.1, title="Labels alignement")
|
312 |
-
# plt.savefig(f'./out/pie_alignement_labels_{filename_no_extension}.png', dpi=400)
|
313 |
-
return fig
|
314 |
-
|
315 |
-
f = plot_pies(to_pie)
|
316 |
-
st.subheader("π·οΈ Global Labels Statistics")
|
317 |
-
st.pyplot(f.figure)
|
318 |
-
|
319 |
-
# global project results view
|
320 |
-
# st_session = {"gs_local":True, "gs_remote":False, "gs_obj":<object>}
|
321 |
-
|
322 |
-
def display_data():
|
323 |
-
col1.metric("Total curated annotations",
|
324 |
-
f"{st.session_state['gs_obj'].total_annotations_project} Named entities")
|
325 |
-
col1.dataframe(st.session_state['gs_obj'].df_i)
|
326 |
-
selected_data = col1.selectbox('Select specific data to display bar plot:',
|
327 |
-
st.session_state['gs_obj'].documents, key="selector_data")
|
328 |
-
col2.pyplot(st.session_state['gs_obj'].create_plot(selected_data))
|
329 |
-
|
330 |
-
def init_session_statistics(remote: bool, local: bool, data: tuple) -> None:
|
331 |
-
# clear session
|
332 |
-
st.session_state = {}
|
333 |
-
|
334 |
-
# create a session variable
|
335 |
-
st.session_state["gs_local"] = local
|
336 |
-
st.session_state["gs_remote"] = remote
|
337 |
-
|
338 |
-
# create a new object:
|
339 |
-
# if remote fetch data from API Host first
|
340 |
-
if remote and not(local):
|
341 |
-
st.success('Fetch curated documents from host INCEpTION API in progress...')
|
342 |
-
fetch_curated_data_from_remote(
|
343 |
-
username=data[0],
|
344 |
-
password=data[1]
|
345 |
-
)
|
346 |
-
|
347 |
-
if local and not(remote):
|
348 |
-
st.session_state["gs_obj"] = GlobalStatistics(zip_project=data, remote=False)
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
from pycaprio import Pycaprio, mappings
|
355 |
-
from zipfile import ZipFile
|
356 |
-
import io
|
357 |
-
import requests
|
358 |
-
|
359 |
-
def fetch_curated_data_from_remote(username: str,
|
360 |
-
password: str,
|
361 |
-
endpoint: str = "https://inception.dhlab.epfl.ch/prod",
|
362 |
-
project_title: str = "ner4archives-template"):
|
363 |
-
# open a client
|
364 |
-
try:
|
365 |
-
client = Pycaprio(inception_host=endpoint, authentication=(str(username), str(password)))
|
366 |
-
except requests.exceptions.JSONDecodeError:
|
367 |
-
# username / password incorrect
|
368 |
-
st.error('Username or Password is incorrect please retry.')
|
369 |
-
|
370 |
-
# get project object
|
371 |
-
project_name = [p for p in client.api.projects() if p.project_name == project_title]
|
372 |
-
|
373 |
-
# get all documents from project
|
374 |
-
documents = client.api.documents(project_name[0].project_id)
|
375 |
-
|
376 |
-
curations = []
|
377 |
-
zipfiles = []
|
378 |
-
count = 0
|
379 |
-
flag = "a"
|
380 |
-
# iterate over all documents and retrieve only curated into ZIP container
|
381 |
-
for document in documents:
|
382 |
-
if count > 0:
|
383 |
-
flag = "r"
|
384 |
-
if document.document_state == mappings.DocumentState.CURATION_COMPLETE:
|
385 |
-
curated_content = client.api.curation(project_name[0].project_id, document,
|
386 |
-
curation_format=mappings.InceptionFormat.UIMA_CAS_XMI_XML_1_1)
|
387 |
-
curations.append(curated_content)
|
388 |
-
for curation in curations:
|
389 |
-
z = ZipFile(io.BytesIO(curation), mode=flag)
|
390 |
-
zipfiles.append(z)
|
391 |
-
|
392 |
-
count += 1
|
393 |
-
|
394 |
-
# Merge all zip in one
|
395 |
-
with zipfiles[0] as z1:
|
396 |
-
for fname in zipfiles[1:]:
|
397 |
-
zf = fname
|
398 |
-
# print(zf.namelist())
|
399 |
-
for n in zf.namelist():
|
400 |
-
if n not in z1.namelist():
|
401 |
-
z1.writestr(n, zf.open(n).read())
|
402 |
-
|
403 |
-
# Create a new object
|
404 |
-
st.session_state["gs_obj"] = GlobalStatistics(zip_project=z1, remote=True)
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
if option == "Global project statistics":
|
410 |
-
# User input controllers
|
411 |
-
mode = sidebar.radio("Choose mode to retrieve curated data: ", (
|
412 |
-
"Local directory", "INCEpTION API Host remote"
|
413 |
-
))
|
414 |
-
data = None
|
415 |
-
if mode == "Local directory":
|
416 |
-
project = sidebar.file_uploader("Folder that contains curated annotations in XMI 1.1 (.zip format only): ",
|
417 |
-
type="zip")
|
418 |
-
data = project
|
419 |
-
if mode == "INCEpTION API Host remote":
|
420 |
-
username = sidebar.text_input("Username: ")
|
421 |
-
password = sidebar.text_input("Password: ", type='password')
|
422 |
-
data = (username, password)
|
423 |
-
|
424 |
-
# Validate inputs
|
425 |
-
btn_process = sidebar.button('Process', key='process')
|
426 |
-
|
427 |
-
# Access data with local ressources
|
428 |
-
if btn_process and mode == "Local directory":
|
429 |
-
if data is not None:
|
430 |
-
# create a new session
|
431 |
-
init_session_statistics(remote=False, local=True, data=data)
|
432 |
-
|
433 |
-
# Access data with remote ressources
|
434 |
-
if btn_process and mode == "INCEpTION API Host remote":
|
435 |
-
if data is not None:
|
436 |
-
if check_login(username=data[0], password=data[1]):
|
437 |
# create a new session
|
438 |
-
init_session_statistics(remote=
|
439 |
-
else:
|
440 |
-
st.error("Sorry! Username or Password is empty.")
|
441 |
-
|
442 |
-
# Change data values and visualize new plot
|
443 |
-
if "gs_obj" in st.session_state:
|
444 |
-
if st.session_state["gs_local"] or st.session_state["gs_remote"]:
|
445 |
-
display_data()
|
446 |
-
|
447 |
-
|
448 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
449 |
|
|
|
|
|
|
|
|
|
450 |
|
451 |
|
|
|
|
|
|
1 |
#!/usr/bin/env python3
|
2 |
# -*- coding:utf-8 -*-
|
|
|
|
|
3 |
|
4 |
import streamlit as st
|
|
|
|
|
|
|
5 |
|
6 |
+
from n4a_analytics_lib.constants import DESCRIPTION
|
7 |
+
|
8 |
+
from n4a_analytics_lib.st_components import (check_login,
|
9 |
+
init_session_statistics,
|
10 |
+
init_session_iaa,
|
11 |
+
display_data)
|
12 |
+
|
13 |
+
|
14 |
+
def n4a_analytics_dashboard() -> None:
|
15 |
+
"""Main function to manage dashboard app frontend
|
16 |
+
-------------------------------------------------
|
17 |
+
* General architecture:
|
18 |
+
*
|
19 |
+
* metrics_utils.py (collection of statistics calculation)
|
20 |
+
* β
|
21 |
+
* project.py (features extraction from XMI) β analytics.py
|
22 |
+
* β (project analyzer: computation/visualisation)
|
23 |
+
* β β
|
24 |
+
* st_components.py (manage data input/output and pipelines with streamlit snippets)
|
25 |
+
* β β
|
26 |
+
* app.py (manage frontend)
|
27 |
+
*
|
28 |
+
---------------------------------------------------
|
29 |
+
"""
|
30 |
+
# Set window application
|
31 |
+
st.set_page_config(layout="wide")
|
32 |
+
|
33 |
+
# Sidebar: metadata, inputs etc.
|
34 |
+
sidebar = st.sidebar
|
35 |
+
# Cols: display results
|
36 |
+
col1, col2 = st.columns(2)
|
37 |
+
|
38 |
+
# Set general description
|
39 |
+
sidebar.markdown(DESCRIPTION)
|
40 |
+
|
41 |
+
# Level to analyze
|
42 |
+
option = sidebar.selectbox('Which statistics level?', ('Inter-Annotator Agreement results',
|
43 |
+
'Global project statistics'))
|
44 |
+
|
45 |
+
# IAA results view
|
46 |
+
if option == "Inter-Annotator Agreement results":
|
47 |
+
annotations = sidebar.file_uploader(
|
48 |
+
"Upload IAA annotations (.zip format only): ",
|
49 |
+
type='zip'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
)
|
51 |
+
baseline_text = sidebar.file_uploader(
|
52 |
+
"Upload baseline text (.txt format only): ",
|
53 |
+
type='txt'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
if baseline_text is not None and annotations is not None:
|
57 |
+
init_session_iaa(data=annotations, baseline=baseline_text, col=col2)
|
58 |
+
|
59 |
+
# Global statistics
|
60 |
+
if option == "Global project statistics":
|
61 |
+
# User input controllers
|
62 |
+
mode = sidebar.radio("Choose mode to retrieve curated data: ", (
|
63 |
+
"Local directory", "INCEpTION API Host remote"
|
64 |
+
))
|
65 |
+
data = None
|
66 |
+
if mode == "Local directory":
|
67 |
+
project = sidebar.file_uploader(
|
68 |
+
"Folder that contains curated annotations in XMI 1.1 (.zip format only): ",
|
69 |
+
type="zip"
|
70 |
+
)
|
71 |
+
data = project
|
72 |
+
if mode == "INCEpTION API Host remote":
|
73 |
+
username = sidebar.text_input("Username: ")
|
74 |
+
password = sidebar.text_input("Password: ", type='password')
|
75 |
+
data = (username, password)
|
76 |
+
|
77 |
+
# Validate inputs
|
78 |
+
btn_process = sidebar.button('Process', key='process')
|
79 |
+
|
80 |
+
# Access data with local ressources
|
81 |
+
if btn_process and mode == "Local directory":
|
82 |
+
if data is not None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
# create a new session
|
84 |
+
init_session_statistics(remote=False, local=True, data=data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
+
# Access data with remote ressources
|
87 |
+
if btn_process and mode == "INCEpTION API Host remote":
|
88 |
+
if data is not None:
|
89 |
+
if check_login(username=data[0], password=data[1]):
|
90 |
+
# create a new session
|
91 |
+
init_session_statistics(remote=True, local=False, data=data)
|
92 |
+
else:
|
93 |
+
st.error("Username or Password is empty, please check and retry.")
|
94 |
|
95 |
+
# Change data values and visualize new plot
|
96 |
+
if "gs_obj" in st.session_state:
|
97 |
+
if st.session_state["gs_local"] or st.session_state["gs_remote"]:
|
98 |
+
display_data(col1)
|
99 |
|
100 |
|
101 |
+
if __name__ == "__main__":
|
102 |
+
n4a_analytics_dashboard()
|
datatest/curation_rapid_global.zip
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:804a01b2ffae53103cd67fa51671ccbbbc988cf2796ec40ccb20f1e9283c1b47
|
3 |
-
size 4670583
|
|
|
|
|
|
|
|
datatest/{test.zip β exemple_IAA_annotations.zip}
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a8058de8efe999f8b2ec4c6162691b4991dbfeee107117f078bdc895c463c6b
|
3 |
+
size 91754
|
n4a_analytics_lib/__pycache__/analytics.cpython-38.pyc
CHANGED
Binary files a/n4a_analytics_lib/__pycache__/analytics.cpython-38.pyc and b/n4a_analytics_lib/__pycache__/analytics.cpython-38.pyc differ
|
|
n4a_analytics_lib/__pycache__/metrics_utils.cpython-38.pyc
CHANGED
Binary files a/n4a_analytics_lib/__pycache__/metrics_utils.cpython-38.pyc and b/n4a_analytics_lib/__pycache__/metrics_utils.cpython-38.pyc differ
|
|
n4a_analytics_lib/__pycache__/project.cpython-38.pyc
CHANGED
Binary files a/n4a_analytics_lib/__pycache__/project.cpython-38.pyc and b/n4a_analytics_lib/__pycache__/project.cpython-38.pyc differ
|
|
n4a_analytics_lib/__pycache__/st_components.cpython-38.pyc
CHANGED
Binary files a/n4a_analytics_lib/__pycache__/st_components.cpython-38.pyc and b/n4a_analytics_lib/__pycache__/st_components.cpython-38.pyc differ
|
|
n4a_analytics_lib/analytics.py
CHANGED
@@ -1,17 +1,20 @@
|
|
1 |
# -*- coding:utf-8 -*-
|
2 |
|
|
|
|
|
|
|
3 |
import pandas as pd
|
4 |
import seaborn as sns
|
5 |
-
import matplotlib
|
6 |
|
7 |
-
|
8 |
|
9 |
import nltk
|
10 |
-
|
11 |
nltk.download('punkt')
|
12 |
from nltk.tokenize import sent_tokenize, word_tokenize
|
13 |
|
14 |
from n4a_analytics_lib.project import Project
|
|
|
15 |
|
16 |
|
17 |
class GlobalStatistics(Project):
|
@@ -24,7 +27,7 @@ class GlobalStatistics(Project):
|
|
24 |
|
25 |
self.total_annotations_project = self.df_i['TOTAL'].sum()
|
26 |
|
27 |
-
def create_plot(self, type_data):
|
28 |
# apply data filter
|
29 |
data_tab_filtered = self.df_details.loc[self.df_details['SOURCE_FILE'] == type_data]
|
30 |
# create a new plot
|
@@ -37,25 +40,38 @@ class GlobalStatistics(Project):
|
|
37 |
return ax.figure
|
38 |
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
class IaaStatistics(Project):
|
44 |
-
def __init__(self, zip_project, baseline_text):
|
45 |
-
super().__init__(zip_project=zip_project, type="iaa")
|
46 |
self.baseline_text = baseline_text.decode('utf-8')
|
47 |
|
48 |
-
# self.docs = {}
|
49 |
-
# self.pairwise = {}
|
50 |
-
# self.similar_mention = []
|
51 |
self.mentions_per_coder = self.extract_refs(self.annotations, self.annotators, type="mentions")
|
52 |
self.labels_per_coder = self.extract_refs(self.annotations, self.annotators, type="labels")
|
53 |
-
|
54 |
self.annotations_per_coders = {coder: dict(zip(ann[1]['mentions'], ann[1]['labels'])) for coder, ann in zip(self.annotators, self.annotations.items())}
|
|
|
|
|
|
|
|
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
@staticmethod
|
58 |
-
def extract_refs(annotations, annotators, type):
|
59 |
return {
|
60 |
coder: data for coder, ann in zip(
|
61 |
annotators,
|
@@ -63,7 +79,82 @@ class IaaStatistics(Project):
|
|
63 |
) for ref, data in ann[1].items() if ref == type
|
64 |
}
|
65 |
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
"""returns total sentences, words and characters
|
68 |
in list format
|
69 |
"""
|
|
|
1 |
# -*- coding:utf-8 -*-
|
2 |
|
3 |
+
from itertools import combinations
|
4 |
+
from collections import defaultdict, Counter
|
5 |
+
|
6 |
import pandas as pd
|
7 |
import seaborn as sns
|
8 |
+
import matplotlib as plt
|
9 |
|
10 |
+
plt.use('Agg')
|
11 |
|
12 |
import nltk
|
|
|
13 |
nltk.download('punkt')
|
14 |
from nltk.tokenize import sent_tokenize, word_tokenize
|
15 |
|
16 |
from n4a_analytics_lib.project import Project
|
17 |
+
from n4a_analytics_lib.metrics_utils import (fleiss_kappa_function, cohen_kappa_function, percentage_agreement_pov)
|
18 |
|
19 |
|
20 |
class GlobalStatistics(Project):
|
|
|
27 |
|
28 |
self.total_annotations_project = self.df_i['TOTAL'].sum()
|
29 |
|
30 |
+
def create_plot(self, type_data: str) -> sns.barplot:
|
31 |
# apply data filter
|
32 |
data_tab_filtered = self.df_details.loc[self.df_details['SOURCE_FILE'] == type_data]
|
33 |
# create a new plot
|
|
|
40 |
return ax.figure
|
41 |
|
42 |
|
|
|
|
|
|
|
43 |
class IaaStatistics(Project):
|
44 |
+
def __init__(self, zip_project, baseline_text, remote=False):
|
45 |
+
super().__init__(zip_project=zip_project, remote=remote, type="iaa")
|
46 |
self.baseline_text = baseline_text.decode('utf-8')
|
47 |
|
|
|
|
|
|
|
48 |
self.mentions_per_coder = self.extract_refs(self.annotations, self.annotators, type="mentions")
|
49 |
self.labels_per_coder = self.extract_refs(self.annotations, self.annotators, type="labels")
|
|
|
50 |
self.annotations_per_coders = {coder: dict(zip(ann[1]['mentions'], ann[1]['labels'])) for coder, ann in zip(self.annotators, self.annotations.items())}
|
51 |
+
self.coders_pairs = list(combinations(self.annotations_per_coders, 2))
|
52 |
+
self.similar_mention = list(dict.fromkeys([l for i,j in self.mentions_per_coder.items() for l in j]))
|
53 |
+
|
54 |
+
self.labels_schema = list(dict.fromkeys([label for _, labels in self.labels_per_coder.items() for label in labels]))
|
55 |
|
56 |
+
# dataframes and matrix analysis
|
57 |
+
self.base_df = self.build_base_df()
|
58 |
+
self.df_agree = self.base_df [self.base_df[self.annotators].apply(lambda row: self.check_all_equal(row), axis=1)]
|
59 |
+
self.df_disagree = self.base_df[self.base_df[self.annotators].apply(lambda row: self.check_all_not_equal(row), axis=1)]
|
60 |
+
self.coders_matrix = self.base_df.apply(pd.Series.value_counts, 1).fillna(0).astype(int).values
|
61 |
+
|
62 |
+
# totals
|
63 |
+
self.total_annotations = len(self.base_df)
|
64 |
+
self.total_agree = len(self.df_agree)
|
65 |
+
self.total_disagree = len(self.df_disagree)
|
66 |
+
|
67 |
+
# access to metrics
|
68 |
+
self.fleiss_kappa = round(fleiss_kappa_function(self.coders_matrix), 2)
|
69 |
+
self.cohen_kappa_pairs = self.compute_pairs_cohen_kappa()
|
70 |
+
self.percent_agree = percentage_agreement_pov(self.total_agree, self.total_annotations)
|
71 |
+
self.percent_disagree = percentage_agreement_pov(self.total_disagree, self.total_annotations)
|
72 |
|
73 |
@staticmethod
|
74 |
+
def extract_refs(annotations: dict, annotators: list, type: str) -> dict:
|
75 |
return {
|
76 |
coder: data for coder, ann in zip(
|
77 |
annotators,
|
|
|
79 |
) for ref, data in ann[1].items() if ref == type
|
80 |
}
|
81 |
|
82 |
+
@staticmethod
|
83 |
+
def check_all_equal(iterator: list) -> bool:
|
84 |
+
return len(set(iterator)) <= 1
|
85 |
+
|
86 |
+
@staticmethod
|
87 |
+
def check_all_not_equal(iterator: list) -> bool:
|
88 |
+
return len(set(iterator)) > 1
|
89 |
+
|
90 |
+
def plot_confusion_matrix(self, width: int, height: int) -> plt.pyplot.subplots:
|
91 |
+
intermediary = defaultdict(Counter)
|
92 |
+
for (src, tgt), count in self.cohen_kappa_pairs.items():
|
93 |
+
intermediary[src][tgt] = count
|
94 |
+
|
95 |
+
letters = sorted({key for inner in intermediary.values() for key in inner} | set(intermediary.keys()))
|
96 |
+
|
97 |
+
confusion_matrix = [[intermediary[src][tgt] for tgt in letters] for src in letters]
|
98 |
+
|
99 |
+
df_cm = pd.DataFrame(confusion_matrix, letters, letters)
|
100 |
+
mask = df_cm.values == 0
|
101 |
+
sns.set(font_scale=0.7) # for label size
|
102 |
+
colors = ["#e74c3c", "#f39c12", "#f4d03f", "#5dade2", "#58d68d", "#28b463"]
|
103 |
+
|
104 |
+
fig, ax = plt.pyplot.subplots(figsize=(width, height))
|
105 |
+
sns.heatmap(df_cm, cmap=colors, annot=True, mask=mask, annot_kws={"size": 7}, vmin=0, vmax=1, ax=ax) # font size
|
106 |
+
return ax
|
107 |
+
|
108 |
+
def build_base_df(self) -> pd.DataFrame:
|
109 |
+
df = pd.DataFrame(self.annotations_per_coders, index=self.similar_mention)
|
110 |
+
for ann in self.annotators:
|
111 |
+
df[ann] = 'None'
|
112 |
+
for mention, value in self.annotations_per_coders[ann].items():
|
113 |
+
df.loc[mention, ann] = value
|
114 |
+
return df
|
115 |
+
|
116 |
+
def compute_pairs_cohen_kappa(self) -> dict:
|
117 |
+
return {
|
118 |
+
(c1, c2): cohen_kappa_function(self.labels_per_coder[c1],
|
119 |
+
self.labels_per_coder[c2]) for c1, c2 in self.coders_pairs
|
120 |
+
}
|
121 |
+
|
122 |
+
def count_total_annotations_label(self) -> list:
|
123 |
+
return [
|
124 |
+
(label, self.base_df.astype(object).eq(label).any(1).sum()) for label in self.labels_schema
|
125 |
+
]
|
126 |
+
|
127 |
+
def total_agree_disagree_per_label(self) -> list:
|
128 |
+
# t[0] : label
|
129 |
+
# t[1] : total_rows_with_label
|
130 |
+
return [(
|
131 |
+
t[0],
|
132 |
+
t[1],
|
133 |
+
(self.base_df[self.base_df.nunique(1).eq(1)].eq(t[0]).any(1).sum() / t[1]) * 100,
|
134 |
+
((t[1] - self.base_df[self.base_df.nunique(1).eq(1)].eq(t[0]).any(1).sum()) / t[1]) * 100
|
135 |
+
)
|
136 |
+
for t in self.count_total_annotations_label()]
|
137 |
+
|
138 |
+
def plot_agreement_pies(self) -> plt.pyplot.subplots:
|
139 |
+
my_labels = 'agree', 'disagree'
|
140 |
+
my_colors = ['#47DBCD', '#F5B14C']
|
141 |
+
my_explode = (0, 0.1)
|
142 |
+
counter = 0
|
143 |
+
tasks_to_pie = self.total_agree_disagree_per_label()
|
144 |
+
fig, axes = plt.pyplot.subplots(1, len(tasks_to_pie), figsize=(20, 3))
|
145 |
+
for t in tasks_to_pie:
|
146 |
+
tasks = [t[2], t[3]]
|
147 |
+
axes[counter].pie(tasks, autopct='%1.1f%%', startangle=15, shadow=True, colors=my_colors,
|
148 |
+
explode=my_explode)
|
149 |
+
axes[counter].set_title(t[0])
|
150 |
+
axes[counter].axis('equal')
|
151 |
+
counter += 1
|
152 |
+
fig.set_facecolor("white")
|
153 |
+
fig.legend(labels=my_labels, loc="center right", borderaxespad=0.1, title="Labels alignement")
|
154 |
+
# plt.savefig(f'./out/pie_alignement_labels_{filename_no_extension}.png', dpi=400)
|
155 |
+
return fig
|
156 |
+
|
157 |
+
def analyze_text(self) -> list:
|
158 |
"""returns total sentences, words and characters
|
159 |
in list format
|
160 |
"""
|
n4a_analytics_lib/constants.py
CHANGED
@@ -11,4 +11,79 @@ of NER4Archives (Inria/Archives nationales).
|
|
11 |
- This tool provides two statistics levels:
|
12 |
- *Global project statistics*: Analyze named entities in overall curated documents in project;
|
13 |
- *Inter-Annotator Agreement results*: Analyze results of IAA experiment.
|
14 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
- This tool provides two statistics levels:
|
12 |
- *Global project statistics*: Analyze named entities in overall curated documents in project;
|
13 |
- *Inter-Annotator Agreement results*: Analyze results of IAA experiment.
|
14 |
+
"""
|
15 |
+
|
16 |
+
KAPPA_LEGEND = """
|
17 |
+
<div>
|
18 |
+
<div id="legend" style="right: 70em;">
|
19 |
+
<h3>π IAA Metrics Legend</h3>
|
20 |
+
<table>
|
21 |
+
<thead>
|
22 |
+
<tr>
|
23 |
+
<th colspan="2">
|
24 |
+
Kappa interpretation legend
|
25 |
+
</th>
|
26 |
+
</tr>
|
27 |
+
</thead>
|
28 |
+
<tbody>
|
29 |
+
<tr>
|
30 |
+
<td>
|
31 |
+
Kappa score (k)
|
32 |
+
</td>
|
33 |
+
<td>
|
34 |
+
Agreement
|
35 |
+
</td>
|
36 |
+
</tr>
|
37 |
+
<tr style = "background-color: #e74c3c;">
|
38 |
+
<td>
|
39 |
+
k < 0
|
40 |
+
</td>
|
41 |
+
<td>
|
42 |
+
Less chance agreement
|
43 |
+
</td>
|
44 |
+
</tr>
|
45 |
+
<tr style = "background-color: #f39c12;">
|
46 |
+
<td>
|
47 |
+
0.01 < k < 0.20
|
48 |
+
</td>
|
49 |
+
<td>
|
50 |
+
Slight agreement
|
51 |
+
</td>
|
52 |
+
</tr>
|
53 |
+
<tr style = "background-color: #f4d03f;">
|
54 |
+
<td>
|
55 |
+
0.21 < k < 0.40
|
56 |
+
</td>
|
57 |
+
<td>
|
58 |
+
Fair agreement
|
59 |
+
</td>
|
60 |
+
</tr>
|
61 |
+
<tr style = "background-color: #5dade2;">
|
62 |
+
<td>
|
63 |
+
0.41 < k < 0.60
|
64 |
+
</td>
|
65 |
+
<td>
|
66 |
+
Moderate agreement
|
67 |
+
</td>
|
68 |
+
</tr>
|
69 |
+
<tr style = "background-color: #58d68d;">
|
70 |
+
<td>
|
71 |
+
0.61 < k < 0.80
|
72 |
+
</td>
|
73 |
+
<td>
|
74 |
+
Substantial agreement
|
75 |
+
</td>
|
76 |
+
</tr>
|
77 |
+
<tr style = "background-color: #28b463;">
|
78 |
+
<td>
|
79 |
+
0.81 < k < 0.99
|
80 |
+
</td>
|
81 |
+
<td>
|
82 |
+
Almost perfect agreement
|
83 |
+
</td>
|
84 |
+
</tr>
|
85 |
+
</tbody>
|
86 |
+
</table>
|
87 |
+
</div>
|
88 |
+
</div>
|
89 |
+
"""
|
n4a_analytics_lib/metrics_utils.py
CHANGED
@@ -1,31 +1,52 @@
|
|
1 |
# -*- coding:utf-8 -*-
|
2 |
|
|
|
|
|
|
|
3 |
import numpy as np
|
4 |
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
"""Computes Fleiss' kappa for group of annotators.
|
7 |
-
:param
|
8 |
-
|
9 |
-
|
|
|
|
|
10 |
:rtype: float
|
11 |
:return: Fleiss' kappa score
|
12 |
"""
|
13 |
-
N,
|
14 |
-
n_annotators = float(np.sum(
|
15 |
tot_annotations = N * n_annotators # the total # of annotations
|
16 |
-
category_sum = np.sum(
|
17 |
|
18 |
# chance agreement
|
19 |
p = category_sum / tot_annotations # the distribution of each category over all annotations
|
20 |
PbarE = np.sum(p * p) # average chance agreement over all categories
|
21 |
|
22 |
# observed agreement
|
23 |
-
P = (np.sum(
|
24 |
-
Pbar = np.sum(P) / N
|
|
|
|
|
25 |
|
26 |
return round((Pbar - PbarE) / (1 - PbarE), 4)
|
27 |
|
28 |
-
|
|
|
29 |
"""Computes Cohen kappa for pair-wise annotators.
|
30 |
:param ann1: annotations provided by first annotator
|
31 |
:type ann1: list
|
@@ -50,19 +71,3 @@ def cohen_kappa_function(ann1, ann2):
|
|
50 |
|
51 |
return round((A - E) / (1 - E), 4)
|
52 |
|
53 |
-
def interpret_kappa(score):
|
54 |
-
color = ""
|
55 |
-
if score < 0:
|
56 |
-
color= "#e74c3c;"
|
57 |
-
elif 0.01 <= score <= 0.20:
|
58 |
-
color= "#f39c12;"
|
59 |
-
elif 0.21 <= score <= 0.40:
|
60 |
-
color= "#f4d03f;"
|
61 |
-
elif 0.41 <= score <= 0.60:
|
62 |
-
color= "#5dade2;"
|
63 |
-
elif 0.61 <= score <= 0.80:
|
64 |
-
color= "#58d68d;"
|
65 |
-
elif 0.81 <= score <= 0.99:
|
66 |
-
color= "#28b463;"
|
67 |
-
|
68 |
-
return f"<span style='font-size:30px; color: {color}'>{round(score*100, 2)} %</span>"
|
|
|
1 |
# -*- coding:utf-8 -*-
|
2 |
|
3 |
+
"""Collection of statistics functions.
|
4 |
+
"""
|
5 |
+
|
6 |
import numpy as np
|
7 |
|
8 |
+
|
9 |
+
def percentage_agreement_pov(total_pov: int, total_annotations: int) -> float:
|
10 |
+
"""Computes a percentage
|
11 |
+
:param total_pov: total agree/disagree annotations
|
12 |
+
:type total_pov: int
|
13 |
+
:param total_annotations: total annotations in project
|
14 |
+
:type total_annotations: int
|
15 |
+
:rtype: float
|
16 |
+
:return: agreement percentage
|
17 |
+
"""
|
18 |
+
return round((total_pov / total_annotations) * 100, 2)
|
19 |
+
|
20 |
+
|
21 |
+
def fleiss_kappa_function(matrix: list) -> float:
|
22 |
"""Computes Fleiss' kappa for group of annotators.
|
23 |
+
:param matrix: a matrix of shape (:attr:'N', :attr:'k') with
|
24 |
+
'N' = number of subjects and 'k' = the number of categories.
|
25 |
+
'M[i, j]' represent the number of raters who assigned
|
26 |
+
the 'i'th subject to the 'j'th category.
|
27 |
+
:type matrix: numpy matrix
|
28 |
:rtype: float
|
29 |
:return: Fleiss' kappa score
|
30 |
"""
|
31 |
+
N, _ = matrix.shape # N is # of items, k is # of categories
|
32 |
+
n_annotators = float(np.sum(matrix[0, :])) # # of annotators
|
33 |
tot_annotations = N * n_annotators # the total # of annotations
|
34 |
+
category_sum = np.sum(matrix, axis=0) # the sum of each category over all items
|
35 |
|
36 |
# chance agreement
|
37 |
p = category_sum / tot_annotations # the distribution of each category over all annotations
|
38 |
PbarE = np.sum(p * p) # average chance agreement over all categories
|
39 |
|
40 |
# observed agreement
|
41 |
+
P = (np.sum(matrix * matrix, axis=1) - n_annotators) / (n_annotators * (n_annotators - 1))
|
42 |
+
Pbar = np.sum(P) / N
|
43 |
+
# add all observed agreement
|
44 |
+
# chances per item and divide by amount of items
|
45 |
|
46 |
return round((Pbar - PbarE) / (1 - PbarE), 4)
|
47 |
|
48 |
+
|
49 |
+
def cohen_kappa_function(ann1: list, ann2: list) -> float:
|
50 |
"""Computes Cohen kappa for pair-wise annotators.
|
51 |
:param ann1: annotations provided by first annotator
|
52 |
:type ann1: list
|
|
|
71 |
|
72 |
return round((A - E) / (1 - E), 4)
|
73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n4a_analytics_lib/project.py
CHANGED
@@ -1,15 +1,35 @@
|
|
1 |
# -*- coding:utf-8 -*-
|
2 |
-
|
3 |
from io import BytesIO
|
4 |
import re
|
5 |
from zipfile import ZipFile
|
6 |
import os
|
7 |
from pathlib import Path
|
8 |
|
9 |
-
|
10 |
from cassis import load_typesystem, load_cas_from_xmi
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
|
15 |
class Project:
|
@@ -44,8 +64,7 @@ class Project:
|
|
44 |
"""
|
45 |
self.annotations = {}
|
46 |
|
47 |
-
|
48 |
-
if isinstance(self.zip_project, zipfile.ZipFile) and self.remote and self.type == "global":
|
49 |
for fp in self.zip_project.namelist():
|
50 |
if self.typesystem is None:
|
51 |
self.typesystem = load_typesystem(BytesIO(self.zip_project.open('TypeSystem.xml').read()))
|
@@ -53,43 +72,40 @@ class Project:
|
|
53 |
self.documents.append(fp)
|
54 |
self.xmi_documents.append(str(self.zip_project.open(fp).read().decode("utf-8")))
|
55 |
|
56 |
-
|
57 |
else:
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
|
90 |
self.extract_ne()
|
91 |
|
92 |
-
|
93 |
@st_pb
|
94 |
def extract_ne(self):
|
95 |
count = 0
|
@@ -112,4 +128,3 @@ class Project:
|
|
112 |
|
113 |
|
114 |
|
115 |
-
|
|
|
1 |
# -*- coding:utf-8 -*-
|
2 |
+
|
3 |
from io import BytesIO
|
4 |
import re
|
5 |
from zipfile import ZipFile
|
6 |
import os
|
7 |
from pathlib import Path
|
8 |
|
9 |
+
import streamlit as st
|
10 |
from cassis import load_typesystem, load_cas_from_xmi
|
11 |
|
12 |
+
|
13 |
+
def st_pb(method):
|
14 |
+
"""streamlit decorator to display
|
15 |
+
progress bar
|
16 |
+
"""
|
17 |
+
def progress_bar(ref):
|
18 |
+
container = st.empty()
|
19 |
+
bar = st.progress(0)
|
20 |
+
pg_gen = method(ref)
|
21 |
+
try:
|
22 |
+
while True:
|
23 |
+
progress = next(pg_gen)
|
24 |
+
bar.progress(progress[0])
|
25 |
+
if progress[2]:
|
26 |
+
container.write("β
Processing... " + progress[1])
|
27 |
+
else:
|
28 |
+
container.write("βοΈ Errror with..." + progress[1])
|
29 |
+
except StopIteration as result:
|
30 |
+
return result.value
|
31 |
+
|
32 |
+
return progress_bar
|
33 |
|
34 |
|
35 |
class Project:
|
|
|
64 |
"""
|
65 |
self.annotations = {}
|
66 |
|
67 |
+
if isinstance(self.zip_project, ZipFile) and self.remote and self.type == "global":
|
|
|
68 |
for fp in self.zip_project.namelist():
|
69 |
if self.typesystem is None:
|
70 |
self.typesystem = load_typesystem(BytesIO(self.zip_project.open('TypeSystem.xml').read()))
|
|
|
72 |
self.documents.append(fp)
|
73 |
self.xmi_documents.append(str(self.zip_project.open(fp).read().decode("utf-8")))
|
74 |
|
|
|
75 |
else:
|
76 |
+
with ZipFile(self.zip_project) as project_zip:
|
77 |
+
if self.type == "global":
|
78 |
+
regex = re.compile('.*curation/.*/(?!\._).*zip$')
|
79 |
+
elif self.type == "iaa":
|
80 |
+
regex = re.compile('.*xm[il]$')
|
81 |
+
|
82 |
+
annotation_fps = (fp for fp in project_zip.namelist() if regex.match(fp))
|
83 |
+
for fp in annotation_fps:
|
84 |
+
if self.type == "global":
|
85 |
+
with ZipFile(BytesIO(project_zip.read(fp))) as annotation_zip:
|
86 |
+
if self.typesystem is None:
|
87 |
+
self.typesystem = load_typesystem(BytesIO(annotation_zip.read('TypeSystem.xml')))
|
88 |
+
for f in annotation_zip.namelist():
|
89 |
+
if f.endswith('.xmi'):
|
90 |
+
# store source filename
|
91 |
+
self.documents.append(Path(fp).parent.name)
|
92 |
+
# annotators = []
|
93 |
+
# store XMI representation
|
94 |
+
self.xmi_documents.append(str(annotation_zip.read(f).decode("utf-8")))
|
95 |
+
elif self.type == "iaa":
|
96 |
+
if self.typesystem is None and fp.endswith('.xml'):
|
97 |
+
self.typesystem = load_typesystem(BytesIO(project_zip.read('TypeSystem.xml')))
|
98 |
+
else:
|
99 |
+
if fp.endswith('.xmi'):
|
100 |
+
# store source filename
|
101 |
+
self.documents.append(fp)
|
102 |
+
# set annotators
|
103 |
+
self.annotators.append(os.path.splitext(fp)[0])
|
104 |
+
# store XMI representation
|
105 |
+
self.xmi_documents.append(str(project_zip.read(fp).decode("utf-8")))
|
|
|
106 |
|
107 |
self.extract_ne()
|
108 |
|
|
|
109 |
@st_pb
|
110 |
def extract_ne(self):
|
111 |
count = 0
|
|
|
128 |
|
129 |
|
130 |
|
|
n4a_analytics_lib/st_components.py
CHANGED
@@ -1,22 +1,198 @@
|
|
1 |
# -*- coding:utf-8 -*-
|
2 |
|
|
|
|
|
|
|
3 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
|
6 |
-
def
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
try:
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# -*- coding:utf-8 -*-
|
2 |
|
3 |
+
import io
|
4 |
+
|
5 |
+
import pandas
|
6 |
import streamlit as st
|
7 |
+
from pycaprio import Pycaprio, mappings
|
8 |
+
from zipfile import ZipFile
|
9 |
+
from requests.exceptions import JSONDecodeError
|
10 |
+
|
11 |
+
from n4a_analytics_lib.analytics import (GlobalStatistics,
|
12 |
+
IaaStatistics)
|
13 |
+
from n4a_analytics_lib.constants import KAPPA_LEGEND
|
14 |
+
|
15 |
+
|
16 |
+
@st.cache
|
17 |
+
def convert_df(df_ex: pandas.DataFrame) -> bytes:
|
18 |
+
return df_ex.to_csv(encoding="utf-8").encode('utf-8')
|
19 |
+
|
20 |
+
|
21 |
+
def check_login(username: str, password: str) -> bool:
|
22 |
+
if (len(username) == 0) or (len(password) == 0):
|
23 |
+
return False
|
24 |
+
return True
|
25 |
+
|
26 |
+
|
27 |
+
def display_data(col: st.columns) -> None:
|
28 |
+
col.metric("Total curated annotations",
|
29 |
+
f"{st.session_state['gs_obj'].total_annotations_project} Named entities")
|
30 |
+
col.dataframe(st.session_state['gs_obj'].df_i)
|
31 |
+
selected_data = col.selectbox('Select specific data to display bar plot:',
|
32 |
+
st.session_state['gs_obj'].documents, key="selector_data")
|
33 |
+
col.pyplot(st.session_state['gs_obj'].create_plot(selected_data))
|
34 |
+
|
35 |
+
|
36 |
+
def template_agreement_dataframe(title: str,
|
37 |
+
df: pandas.DataFrame,
|
38 |
+
total_pov: int,
|
39 |
+
total_annotations: int,
|
40 |
+
percentage_pov: float,
|
41 |
+
mode: str) -> None:
|
42 |
+
st.subheader(title)
|
43 |
+
st.markdown(f"{total_pov} / {total_annotations} annotations ({percentage_pov} %)")
|
44 |
+
st.download_button(
|
45 |
+
"Press to Download CSV",
|
46 |
+
convert_df(df),
|
47 |
+
f"csv_annotators_{mode}.csv",
|
48 |
+
"text/csv",
|
49 |
+
key=f'download-csv_{mode}'
|
50 |
+
)
|
51 |
+
st.dataframe(df)
|
52 |
+
|
53 |
+
|
54 |
+
def init_session_iaa(data: st.file_uploader,
|
55 |
+
baseline: st.file_uploader,
|
56 |
+
col: st.columns) -> None:
|
57 |
+
project_analyzed = IaaStatistics(zip_project=data, baseline_text=baseline.getvalue())
|
58 |
+
baseline_analyzer = project_analyzed.analyze_text()
|
59 |
+
|
60 |
+
col.markdown(f"""
|
61 |
+
### BASELINE TEXT: {baseline.name}
|
62 |
+
|
63 |
+
- sentences: {baseline_analyzer[0]}
|
64 |
+
- words: {baseline_analyzer[1]}
|
65 |
+
- characters: {baseline_analyzer[2]}
|
66 |
+
""")
|
67 |
+
|
68 |
+
st.markdown("## π IAA metrics")
|
69 |
+
col1_kappa, col2_kappa = st.columns(2)
|
70 |
+
|
71 |
+
# Display Kappa group
|
72 |
+
col1_kappa.subheader("Fleiss Kappa (global score for group):")
|
73 |
+
col1_kappa.markdown(interpret_kappa(project_analyzed.fleiss_kappa), unsafe_allow_html=True)
|
74 |
+
|
75 |
+
# Display pairs kappa
|
76 |
+
col1_kappa.subheader("Cohen Kappa (score for annotators pair):")
|
77 |
+
for coders, c_k in project_analyzed.compute_pairs_cohen_kappa().items():
|
78 |
+
col1_kappa.markdown(f"* {coders[0]} <> {coders[1]} : {interpret_kappa(c_k)}", unsafe_allow_html=True)
|
79 |
+
|
80 |
+
# Display Kappa legend
|
81 |
+
col2_kappa.markdown(KAPPA_LEGEND, unsafe_allow_html=True)
|
82 |
+
|
83 |
+
# Plot confusion matrix
|
84 |
+
if st.checkbox('Display confusion matrix'):
|
85 |
+
width = st.slider("matrix width", 1, 10, 14)
|
86 |
+
height = st.slider("matrix height", 1, 10, 4)
|
87 |
+
st.pyplot(project_analyzed.plot_confusion_matrix(width=width, height=height).figure)
|
88 |
+
|
89 |
+
# Agree CSV
|
90 |
+
template_agreement_dataframe(title="β
οΈ Agree annotations",
|
91 |
+
df=project_analyzed.df_agree,
|
92 |
+
total_pov=project_analyzed.total_agree,
|
93 |
+
total_annotations=project_analyzed.total_annotations,
|
94 |
+
percentage_pov=project_analyzed.percent_agree,
|
95 |
+
mode="agree")
|
96 |
+
# Disagree CSV
|
97 |
+
template_agreement_dataframe(title="β Disagree annotations",
|
98 |
+
df=project_analyzed.df_disagree,
|
99 |
+
total_pov=project_analyzed.total_disagree,
|
100 |
+
total_annotations=project_analyzed.total_annotations,
|
101 |
+
percentage_pov=project_analyzed.percent_disagree,
|
102 |
+
mode="disagree")
|
103 |
+
# Pie plot
|
104 |
+
st.subheader("π·οΈ Global Labels Statistics")
|
105 |
+
st.pyplot(project_analyzed.plot_agreement_pies().figure)
|
106 |
|
107 |
|
108 |
+
def init_session_statistics(remote: bool, local: bool, data: tuple) -> None:
|
109 |
+
# clear session
|
110 |
+
st.session_state = {}
|
111 |
+
|
112 |
+
# create a session variable
|
113 |
+
st.session_state["gs_local"] = local
|
114 |
+
st.session_state["gs_remote"] = remote
|
115 |
+
|
116 |
+
# create a new object:
|
117 |
+
# if remote fetch data from API Host first
|
118 |
+
if remote and not(local):
|
119 |
+
st.success('Fetch curated documents from host INCEpTION API in progress...')
|
120 |
try:
|
121 |
+
fetch_curated_data_from_remote(
|
122 |
+
username=data[0],
|
123 |
+
password=data[1]
|
124 |
+
)
|
125 |
+
except JSONDecodeError:
|
126 |
+
# username / password incorrect
|
127 |
+
st.error('Username or Password is incorrect please retry.')
|
128 |
+
st.session_state = {}
|
129 |
+
|
130 |
+
if local and not(remote):
|
131 |
+
st.session_state["gs_obj"] = GlobalStatistics(zip_project=data, remote=False)
|
132 |
+
|
133 |
+
|
134 |
+
def fetch_curated_data_from_remote(username: str,
|
135 |
+
password: str,
|
136 |
+
endpoint: str = "https://inception.dhlab.epfl.ch/prod",
|
137 |
+
project_title: str = "ner4archives-template") -> None:
|
138 |
+
# open a client
|
139 |
+
client = Pycaprio(inception_host=endpoint, authentication=(str(username), str(password)))
|
140 |
+
|
141 |
+
# get project object
|
142 |
+
project_name = [p for p in client.api.projects() if p.project_name == project_title]
|
143 |
+
|
144 |
+
# get all documents from project
|
145 |
+
documents = client.api.documents(project_name[0].project_id)
|
146 |
+
|
147 |
+
curations = []
|
148 |
+
zipfiles = []
|
149 |
+
count = 0
|
150 |
+
flag = "a"
|
151 |
+
# iterate over all documents and retrieve only curated into ZIP container
|
152 |
+
for document in documents:
|
153 |
+
if count > 0:
|
154 |
+
flag = "r"
|
155 |
+
if document.document_state == mappings.DocumentState.CURATION_COMPLETE:
|
156 |
+
curated_content = client.api.curation(project_name[0].project_id, document,
|
157 |
+
curation_format=mappings.InceptionFormat.UIMA_CAS_XMI_XML_1_1)
|
158 |
+
curations.append(curated_content)
|
159 |
+
for curation in curations:
|
160 |
+
z = ZipFile(io.BytesIO(curation), mode=flag)
|
161 |
+
zipfiles.append(z)
|
162 |
+
|
163 |
+
count += 1
|
164 |
+
|
165 |
+
# Merge all zip in one
|
166 |
+
with zipfiles[0] as z1:
|
167 |
+
for fname in zipfiles[1:]:
|
168 |
+
zf = fname
|
169 |
+
# print(zf.namelist())
|
170 |
+
for n in zf.namelist():
|
171 |
+
if n not in z1.namelist():
|
172 |
+
z1.writestr(n, zf.open(n).read())
|
173 |
+
|
174 |
+
# Create a new object
|
175 |
+
st.session_state["gs_obj"] = GlobalStatistics(zip_project=z1, remote=True)
|
176 |
+
|
177 |
+
|
178 |
+
def interpret_kappa(score: float) -> str:
|
179 |
+
color = ""
|
180 |
+
if score < 0:
|
181 |
+
color= "#e74c3c;"
|
182 |
+
elif 0.01 <= score <= 0.20:
|
183 |
+
color= "#f39c12;"
|
184 |
+
elif 0.21 <= score <= 0.40:
|
185 |
+
color= "#f4d03f;"
|
186 |
+
elif 0.41 <= score <= 0.60:
|
187 |
+
color= "#5dade2;"
|
188 |
+
elif 0.61 <= score <= 0.80:
|
189 |
+
color= "#58d68d;"
|
190 |
+
elif 0.81 <= score <= 0.99:
|
191 |
+
color= "#28b463;"
|
192 |
+
|
193 |
+
return f"<span style='font-size:30px; color: {color}'>{round(score*100, 2)} %</span>"
|
194 |
+
|
195 |
+
|
196 |
+
|
197 |
+
|
198 |
+
|