from langchain_openai.chat_models import ChatOpenAI from langchain_community.tools.tavily_search import TavilySearchResults from langchain.tools.render import format_tool_to_openai_function from langgraph.prebuilt import ToolExecutor,ToolInvocation from typing import TypedDict, Annotated, Sequence import operator from langchain_core.messages import BaseMessage,FunctionMessage,HumanMessage from langchain.tools import ShellTool import json import os import gradio as gr os.environ["LANGCHAIN_TRACING_V2"] ="True" os.environ["LANGCHAIN_API_KEY"]="ls__54e16f70b2b0455aad0f2cbf47777d30" os.environ["OPENAI_API_KEY"]="20a79668d6113e99b35fcd541c65bfeaec497b8262c111bd328ef5f1ad8c6335" # os.environ["OPENAI_API_KEY"]="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" os.environ["LANGCHAIN_ENDPOINT"]="https://api.smith.langchain.com" os.environ["LANGCHAIN_PROJECT"]="default" os.environ['TAVILY_API_KEY'] = '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' class AgentState(TypedDict): messages: Annotated[Sequence[BaseMessage], operator.add] model = ChatOpenAI(model="gpt-3.5-turbo-1106",api_key="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") shell_tool = ShellTool() tools = [TavilySearchResults(max_results=1),shell_tool] functions = [format_tool_to_openai_function(t) for t in tools] model = model.bind_functions(functions) tool_executor = ToolExecutor(tools) # Define the function that determines whether to continue or not def should_continue(state): messages = state['messages'] last_message = messages[-1] # If there is no function call, then we finish if "function_call" not in last_message.additional_kwargs: return "end" # Otherwise if there is, we continue else: return "continue" # Define the function that calls the model def call_model(state): messages = state['messages'] response = model.invoke(messages) # We return a list, because this will get added to the existing list return {"messages": [response]} # Define the function to execute tools def call_tool(state): messages = state['messages'] # Based on the continue condition # we know the last message involves a function call last_message = messages[-1] # We construct an ToolInvocation from the function_call action = ToolInvocation( tool=last_message.additional_kwargs["function_call"]["name"], tool_input=json.loads(last_message.additional_kwargs["function_call"]["arguments"]), ) # We call the tool_executor and get back a response response = tool_executor.invoke(action) # We use the response to create a FunctionMessage function_message = FunctionMessage(content=str(response), name=action.tool) # We return a list, because this will get added to the existing list return {"messages": [function_message]} from langgraph.graph import StateGraph, END # Define a new graph workflow = StateGraph(AgentState) # Define the two nodes we will cycle between workflow.add_node("agent", call_model) workflow.add_node("action", call_tool) # Set the entrypoint as `agent` # This means that this node is the first one called workflow.set_entry_point("agent") # We now add a conditional edge workflow.add_conditional_edges( # First, we define the start node. We use `agent`. # This means these are the edges taken after the `agent` node is called. "agent", # Next, we pass in the function that will determine which node is called next. should_continue, # Finally we pass in a mapping. # The keys are strings, and the values are other nodes. # END is a special node marking that the graph should finish. # What will happen is we will call `should_continue`, and then the output of that # will be matched against the keys in this mapping. # Based on which one it matches, that node will then be called. { # If `tools`, then we call the tool node. "continue": "action", # Otherwise we finish. "end": END } ) # We now add a normal edge from `tools` to `agent`. # This means that after `tools` is called, `agent` node is called next. workflow.add_edge('action', 'agent') # Finally, we compile it! # This compiles it into a LangChain Runnable, # meaning you can use it as you would any other runnable app = workflow.compile() # inputs = {"messages": [HumanMessage(content="查询你的cast命令版本")]} # app.invoke(inputs) async def predict(question): que={"messages": [HumanMessage(content=question)]} res=app.invoke(que) if res: return(res["output"]) else:print("不好意思,出了一个小问题,请联系我的微信:13603634456") gr.Interface( predict,inputs="textbox", outputs="textbox", title="定制版AI专家BOT-0.1版", description="这是一个定制版的AI专家BOT,你可以通过输入问题,让AI为你回答。\n目前提供三个示例工具:\n1.bash命令行执行工具,可以将人类语言转化为bash命令,然后执行。\n2.搜索引擎").launch()