File size: 14,932 Bytes
a39938f
996dccf
 
 
 
8cc8a87
996dccf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cc8a87
996dccf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a39938f
 
 
 
 
 
 
 
 
 
 
 
 
7597bf1
996dccf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a04f8c
996dccf
 
 
 
8cc8a87
996dccf
 
 
 
9a04f8c
996dccf
 
 
 
8cc8a87
996dccf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a04f8c
996dccf
 
 
 
8cc8a87
996dccf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a04f8c
 
996dccf
 
 
 
8cc8a87
996dccf
 
 
 
 
 
 
 
 
 
 
9a04f8c
996dccf
 
 
 
8cc8a87
996dccf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cc8a87
996dccf
 
 
 
 
9a04f8c
 
 
 
 
 
 
996dccf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cc8a87
 
 
 
 
 
 
996dccf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a04f8c
996dccf
 
 
 
8cc8a87
996dccf
 
 
 
 
 
 
 
 
 
 
 
9a04f8c
996dccf
 
 
 
8cc8a87
996dccf
 
 
 
 
 
 
 
 
9a04f8c
996dccf
 
 
 
8cc8a87
996dccf
 
 
 
 
 
9a04f8c
996dccf
 
 
 
8cc8a87
996dccf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a39938f
996dccf
 
9a04f8c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
from time import sleep
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
# from gradio_space_ci import enable_space_ci

from src.display.about import (
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    EVAL_COLS,
    EVAL_TYPES,
    NUMERIC_INTERVALS,
    TYPES,
    AutoEvalColumn,
    ModelType,
    fields,
    WeightType,
    Precision,
    Format
)
from src.envs import API, EVAL_RESULTS_PATH, RESULTS_REPO, REPO_ID, HF_TOKEN
from src.populate import get_leaderboard_df

# from src.tools.collections import update_collections
from src.tools.plots import (
    create_metric_plot_obj,
    create_plot_df,
    create_scores_df,
)

# Start ephemeral Spaces on PRs (see config in README.md)
# enable_space_ci()


def restart_space():
    API.restart_space(repo_id=REPO_ID, token=HF_TOKEN)


def init_space():

    try:
        print(EVAL_RESULTS_PATH)
        snapshot_download(
            repo_id=RESULTS_REPO,
            local_dir=EVAL_RESULTS_PATH,
            repo_type="dataset",
            tqdm_class=None,
            etag_timeout=30,
            resume_download=True,
        )
    except Exception as e:
        print(e)
        sleep(180)  # sleep 3 min
        return init_space()

    raw_data, original_df = get_leaderboard_df(
        results_path=EVAL_RESULTS_PATH, cols=COLS, benchmark_cols=BENCHMARK_COLS
    )
    # update_collections(original_df.copy())
    leaderboard_df = original_df.copy()

    plot_df = create_plot_df(create_scores_df(raw_data))

    return leaderboard_df, original_df, plot_df


leaderboard_df, original_df, plot_df = init_space()


# Searching and filtering
def update_table(
    hidden_df: pd.DataFrame,
    columns: list,
    # type_query: list,
    weight_precision_query: str,
    activation_precision_query: str,
    size_query: list,
    hide_models: list,
    format_query: list,
    query: str,
):
    filtered_df = filter_models(
        df=hidden_df,
        # type_query=type_query,
        size_query=size_query,
        weight_precision_query=weight_precision_query,
        activation_precision_query=activation_precision_query,
        hide_models=hide_models,
        format_query=format_query,
    )
    filtered_df = filter_queries(query, filtered_df)
    df = select_columns(filtered_df, columns)
    return df


def load_query(request: gr.Request):  # triggered only once at startup => read query parameter if it exists
    query = request.query_params.get("query") or ""
    return (
        query,
        query,
    )  # return one for the "search_bar", one for a hidden component that triggers a reload only if value has changed


def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
    return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]


def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
    always_here_cols = [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
    dummy_col = [AutoEvalColumn.dummy.name]
    # AutoEvalColumn.model_type_symbol.name,
    # AutoEvalColumn.model.name,
    # We use COLS to maintain sorting
    filtered_df = df[always_here_cols + [c for c in COLS if c in df.columns and c in columns] + dummy_col]
    return filtered_df


def filter_queries(query: str, filtered_df: pd.DataFrame):
    """Added by Abishek"""
    final_df = []
    if query != "":
        queries = [q.strip() for q in query.split(";")]
        for _q in queries:
            _q = _q.strip()
            if _q != "":
                temp_filtered_df = search_table(filtered_df, _q)
                if len(temp_filtered_df) > 0:
                    final_df.append(temp_filtered_df)
        if len(final_df) > 0:
            filtered_df = pd.concat(final_df)
            filtered_df = filtered_df.drop_duplicates(
                subset=[
                    AutoEvalColumn.model.name,
                    AutoEvalColumn.weight_precision.name,
                    AutoEvalColumn.activation_precision.name,
                    AutoEvalColumn.revision.name,
                ]
            )

    return filtered_df


def filter_models(
    df: pd.DataFrame,
    # type_query: list,
    size_query: list,
    weight_precision_query: list,
    activation_precision_query: list,
    hide_models: list,
    format_query: list,
) -> pd.DataFrame:
    # Show all models
    if "Private or deleted" in hide_models:
        filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
    else:
        filtered_df = df

    if "Contains a merge/moerge" in hide_models:
        filtered_df = filtered_df[filtered_df[AutoEvalColumn.merged.name] == False]

    if "MoE" in hide_models:
        filtered_df = filtered_df[filtered_df[AutoEvalColumn.moe.name] == False]

    if "Flagged" in hide_models:
        filtered_df = filtered_df[filtered_df[AutoEvalColumn.flagged.name] == False]

    # type_emoji = [t[0] for t in type_query]
    # filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
    filtered_df = filtered_df.loc[df[AutoEvalColumn.weight_precision.name].isin(weight_precision_query + ["None"])]
    filtered_df = filtered_df.loc[
        df[AutoEvalColumn.activation_precision.name].isin(activation_precision_query + ["None"])
    ]
    filtered_df = filtered_df.loc[df[AutoEvalColumn.format.name].isin(format_query)]

    numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
    params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
    mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
    filtered_df = filtered_df.loc[mask]

    return filtered_df


leaderboard_df = filter_models(
    df=leaderboard_df,
    # type_query=[t.to_str(" : ") for t in ModelType],
    size_query=list(NUMERIC_INTERVALS.keys()),
    weight_precision_query=[i.value.name for i in Precision],
    activation_precision_query=[i.value.name for i in Precision],
    hide_models=["Private or deleted", "Contains a merge/moerge", "Flagged"],  # Deleted, merges, flagged, MoEs
    format_query=[i.value.name for i in Format],
)

demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ… LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        search_bar = gr.Textbox(
                            placeholder=" πŸ” Search for your model (separate multiple queries with `;`) and press ENTER...",
                            show_label=False,
                            elem_id="search-bar",
                        )
                    with gr.Row():
                        shown_columns = gr.CheckboxGroup(
                            choices=[
                                c.name
                                for c in fields(AutoEvalColumn)
                                if not c.hidden and not c.never_hidden and not c.dummy
                            ],
                            value=[
                                c.name
                                for c in fields(AutoEvalColumn)
                                if c.displayed_by_default and not c.hidden and not c.never_hidden
                            ],
                            label="Select columns to show",
                            elem_id="column-select",
                            interactive=True,
                        )
                    with gr.Row():
                        hide_models = gr.CheckboxGroup(
                            label="Hide models",
                            choices=["Private or deleted", "Contains a merge/moerge", "Flagged"], #, "MoE"],
                            value=["Private or deleted", "Contains a merge/moerge", "Flagged"],
                            interactive=True,
                        )
                with gr.Column(min_width=320):
                    # with gr.Box(elem_id="box-filter"):
                    # filter_columns_type = gr.CheckboxGroup(
                    #     label="Model types",
                    #     choices=[t.to_str() for t in ModelType],
                    #     value=[t.to_str() for t in ModelType],
                    #     interactive=True,
                    #     elem_id="filter-columns-type",
                    # )
                    filter_columns_weight_precision = gr.CheckboxGroup(
                        label="Weight Precision",
                        choices=[i.value.name for i in Precision],
                        value=[i.value.name for i in Precision],
                        interactive=True,
                        elem_id="filter-columns-weight-precision",
                    )
                    filter_columns_activation_precision = gr.CheckboxGroup(
                        label="Activation Precision",
                        choices=[i.value.name for i in Precision],
                        value=[i.value.name for i in Precision],
                        interactive=True,
                        elem_id="filter-columns-activation-precision",
                    )
                    filter_columns_size = gr.CheckboxGroup(
                        label="Model sizes (in billions of parameters)",
                        choices=list(NUMERIC_INTERVALS.keys()),
                        value=list(NUMERIC_INTERVALS.keys()),
                        interactive=True,
                        elem_id="filter-columns-size",
                    )
                    filter_format = gr.CheckboxGroup(
                        label="Format",
                        choices=[i.value.name for i in Format],
                        value=[i.value.name for i in Format],
                        interactive=True,
                        elem_id="filter-format",
                    )

            leaderboard_table = gr.components.Dataframe(
                value=leaderboard_df[
                    [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
                    + shown_columns.value
                    + [AutoEvalColumn.dummy.name]
                ],
                headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
                datatype=TYPES,
                elem_id="leaderboard-table",
                interactive=False,
                visible=True,
                # column_widths=["2%", "33%"]
            )

            # Dummy leaderboard for handling the case when the user uses backspace key
            hidden_leaderboard_table_for_search = gr.components.Dataframe(
                value=original_df[COLS],
                headers=COLS,
                datatype=TYPES,
                visible=False,
            )
            search_bar.submit(
                update_table,
                [
                    hidden_leaderboard_table_for_search,
                    shown_columns,
                    # filter_columns_type,
                    filter_columns_weight_precision,
                    filter_columns_activation_precision,
                    filter_columns_size,
                    hide_models,
                    filter_format,
                    search_bar,
                ],
                leaderboard_table,
            )

            # Define a hidden component that will trigger a reload only if a query parameter has been set
            hidden_search_bar = gr.Textbox(value="", visible=False)
            hidden_search_bar.change(
                update_table,
                [
                    hidden_leaderboard_table_for_search,
                    shown_columns,
                    # filter_columns_type,
                    filter_columns_weight_precision,
                    filter_columns_activation_precision,
                    filter_columns_size,
                    hide_models,
                    filter_format,
                    search_bar,
                ],
                leaderboard_table,
            )
            # Check query parameter once at startup and update search bar + hidden component
            demo.load(load_query, inputs=[], outputs=[search_bar, hidden_search_bar])

            for selector in [
                shown_columns,
                # filter_columns_type,
                filter_columns_weight_precision,
                filter_columns_activation_precision,
                filter_columns_size,
                hide_models,
                filter_format,
            ]:
                selector.change(
                    update_table,
                    [
                        hidden_leaderboard_table_for_search,
                        shown_columns,
                        # filter_columns_type,
                        filter_columns_weight_precision,
                        filter_columns_activation_precision,
                        filter_columns_size,
                        hide_models,
                        filter_format,
                        search_bar,
                    ],
                    leaderboard_table,
                    queue=True,
                )

        with gr.TabItem("πŸ“ˆ Metrics through time", elem_id="llm-benchmark-tab-table", id=4):
            with gr.Row():
                with gr.Column():
                    chart = create_metric_plot_obj(
                        plot_df,
                        [AutoEvalColumn.average.name],
                        title="Average of Top Scores and Human Baseline Over Time (from last update)",
                    )
                    gr.Plot(value=chart, min_width=500)
                with gr.Column():
                    chart = create_metric_plot_obj(
                        plot_df,
                        BENCHMARK_COLS,
                        title="Top Scores and Human Baseline Over Time (from last update)",
                    )
                    gr.Plot(value=chart, min_width=500)
        with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=2):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)  # restarted every 3h
scheduler.start()

demo.queue(default_concurrency_limit=40).launch()