Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,651 Bytes
a65550c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
import re
from rouge import Rouge
import argparse
import os
import json
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
spot_the_diff = ["Spot-the-Diff", "Birds-to-Words", "CLEVR-Change"]
image_edit_instruct = ["IEdit", "HQ-Edit", "MagicBrush"]
visual_story_telling = ["AESOP", "FlintstonesSV", "PororoSV", "VIST"]
visual_cloze = ["COMICS_Dialogue", "RecipeQA_VisualCloze"]
text_rich_vqa = ["WebQA", "TQA", "OCR-VQA", "DocVQA"]
multi_image_vqa = ["MIT-States_StateCoherence", "MIT-States_PropertyCoherence", "VISION", "RecipeQA_ImageCoherence"]
puzzle = ["RAVEN"]
nlrv2 = ["NLVR2_Mantis"]
qbench = ["QBench"]
class Eval:
def __init__(self):
self.periodStrip = re.compile("(?!<=\d)(\.)(?!\d)")
self.commaStrip = re.compile("(\d)(\,)(\d)")
self.punct = [
";",
r"/",
"[",
"]",
'"',
"{",
"}",
"(",
")",
"=",
"+",
"\\",
"_",
"-",
">",
"<",
"@",
"`",
",",
"?",
"!",
]
def processPunctuation(self, inText):
outText = inText
for p in self.punct:
if (p + " " in inText or " " + p in inText) or (
re.search(self.commaStrip, inText) != None
):
outText = outText.replace(p, "")
else:
outText = outText.replace(p, " ")
outText = self.periodStrip.sub("", outText, re.UNICODE)
return outText
def process(self, answer):
answer = answer.replace("\n", " ")
answer = answer.replace("\t", " ")
answer = answer.strip()
answer = self.processPunctuation(answer)
answer = answer.strip('\'')
answer = answer.strip('\"')
answer = answer.strip(')')
answer = answer.strip('(')
answer = answer.strip().lower()
return answer
def evaluate_rouge(self,preds):
rouge = Rouge()
acc = {'f': []}
eval_list = []
for i, res in enumerate(preds):
sample_id = res['sample_id']
# print(sample_id)
gt_ans = self.process(res["gt_response"])
pred_ans = self.process(res["pred_response"])
# assert gt_ans != ''
if gt_ans == '':
continue
if pred_ans == '':
s = 0
else:
if len(pred_ans) > 512:
pred_ans = pred_ans[0: 512]
s = rouge.get_scores(pred_ans, gt_ans)[0]['rouge-l']['f']
acc['f'].append(s)
eval_list.append({'id':str(sample_id),'score':str(round(s,3))})
results = {'Rouge-L f': np.mean(acc['f'])}
return results,eval_list
def judge_multi_choice(self,sample):
sample_id = sample['sample_id']
gt_ans = sample["gt_response"]
pred_ans = sample["pred_response"]
if ":" in pred_ans:
a_list = pred_ans.split(":")
a_list = [a.strip() for a in a_list ]
for a in a_list:
if len(a) == 1 and a[-1] in ["a", "b", "c", "d", "e", "f", "g", "h"]:
pred_ans = a
if pred_ans == gt_ans:
return 1
else:
return 0
def process_sample(self,sample):
sample["gt_response"] = self.process(sample["gt_response"])
sample["pred_response"] = self.process(sample["pred_response"])
def evaluate_multichoice(self, preditions):
correct = 0
eval_list = []
for i, sample in enumerate(preditions):
self.process_sample(sample)
score = self.judge_multi_choice(sample)
sample_id = sample['sample_id']
sample['result'] = score
eval_list.append({'id':str(sample_id),'score':str(score)})
correct+=score
return {'Accuracy':correct/len(preditions)},eval_list
def evaluate_multi_choice_image(self,preditions):
correct = 0
eval_list = []
for i,sample in enumerate(preditions):
gt_ans = self.process(sample["gt_response"])
pred_ans = self.process(sample["pred_response"])
sample_id = sample['sample_id']
if ":" in pred_ans:
a_list = pred_ans.split(":")
a_list = [a.strip() for a in a_list ]
for a in a_list:
if len(a) == 1 and a[-1] in ["a", "b", "c", "d", "e", "f", "g", "h"]:
pred_ans = a
if gt_ans == pred_ans:
score = 1
else:
score = 0
sample_id = sample['sample_id']
sample['result'] = score
eval_list.append({'id':str(sample_id),'score':str(score)})
correct+=score
return {'Accuracy':correct/len(preditions)},eval_list
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--result-dir', type=str, required=True)
args = parser.parse_args()
result_file = os.path.join(args.result_dir, "result.jsonl")
if not os.path.exists(result_file):
print('No prediction file found')
exit(0)
with open(result_file, 'r') as f:
preds_all = [json.loads(line) for line in f]
preds_all_dict = dict()
for pred in preds_all:
if pred["dataset"] not in preds_all_dict:
preds_all_dict[pred["dataset"]] = list()
preds_all_dict[pred["dataset"]].append(pred)
image_choice_dataset_list = ["recipeqa-RecipeQA_VisualCloze", "RecipeQA_ImageCoherence", "COMICS_Panel"]
E = Eval()
eval_result_list = dict()
eval_result_list_detail = dict()
for dataset in preds_all_dict:
preds = preds_all_dict[dataset]
question_type = preds[0]["question_type"]
if question_type == 'open-ended':
eval_result, eval_list = E.evaluate_rouge(preds)
elif question_type == 'multi-choice' or dataset == 'nlrv2':
if dataset in image_choice_dataset_list:
eval_result, eval_list = E.evaluate_multi_choice_image(preds)
else:
eval_result, eval_list = E.evaluate_multichoice(preds)
else:
eval_result = 'Dataset not supported'
print('Dataset not supported')
exit(0)
print(dataset, end = ': ')
print(eval_result)
eval_result_list[dataset] = eval_result
eval_result_list_detail[dataset] = eval_list
os.makedirs(args.result_dir, exist_ok=True)
with open(os.path.join(args.result_dir, 'eval_dataset.json'), 'w') as f:
json.dump(eval_result_list, f, indent=4)
with open(os.path.join(args.result_dir,'eval_dataset_details.json'), 'w') as f:
json.dump(eval_result_list_detail, f, indent=4)
eval_cat_list = dict()
print()
# spot_the_diff
score = 0
count = 0
for dataset in eval_result_list:
if dataset in spot_the_diff:
count += 1
score += list(eval_result_list[dataset].values())[0]
if count > 0:
score /= count
eval_cat_list["spot_the_diff"] = score
print("spot_the_diff", end = ': ')
print('{:.2f}'.format(100 * score))
# image_edit_instruct
score = 0
count = 0
for dataset in eval_result_list:
if dataset in image_edit_instruct:
count += 1
score += list(eval_result_list[dataset].values())[0]
if count > 0:
score /= count
eval_cat_list["image_edit_instruct"] = score
print("image_edit_instruct", end = ': ')
print('{:.2f}'.format(100 * score))
# visual_story_telling
score = 0
count = 0
for dataset in eval_result_list:
if dataset in visual_story_telling:
count += 1
score += list(eval_result_list[dataset].values())[0]
if count > 0:
score /= count
eval_cat_list["visual_story_telling"] = score
print("visual_story_telling", end = ': ')
print('{:.2f}'.format(100 * score))
# visual_cloze
score = 0
count = 0
for dataset in eval_result_list:
if dataset in visual_cloze:
count += 1
score += list(eval_result_list[dataset].values())[0]
if count > 0:
score /= count
eval_cat_list["visual_cloze"] = score
print("visual_cloze", end = ': ')
print('{:.2f}'.format(100 * score))
# text_rich_vqa
score = 0
count = 0
for dataset in eval_result_list:
if dataset in text_rich_vqa:
count += 1
score += list(eval_result_list[dataset].values())[0]
if count > 0:
score /= count
eval_cat_list["text_rich_vqa"] = score
print("text_rich_vqa", end = ': ')
print('{:.2f}'.format(100 * score))
# multi_image_vqa
score = 0
count = 0
for dataset in eval_result_list:
if dataset in multi_image_vqa:
count += 1
score += list(eval_result_list[dataset].values())[0]
if count > 0:
score /= count
eval_cat_list["multi_image_vqa"] = score
print("multi_image_vqa", end = ': ')
print('{:.2f}'.format(100 * score))
# puzzle
score = 0
count = 0
for dataset in eval_result_list:
if dataset in puzzle:
count += 1
score += list(eval_result_list[dataset].values())[0]
if count > 0:
score /= count
eval_cat_list["puzzle"] = score
print("puzzle", end = ': ')
print('{:.2f}'.format(100 * score))
# nlrv2
score = 0
count = 0
for dataset in eval_result_list:
if dataset in nlrv2:
count += 1
score += list(eval_result_list[dataset].values())[0]
if count > 0:
score /= count
eval_cat_list["nlrv2"] = score
print("nlrv2", end = ': ')
print('{:.2f}'.format(100 * score))
# qbench
score = 0
count = 0
for dataset in eval_result_list:
if dataset in qbench:
count += 1
score += list(eval_result_list[dataset].values())[0]
if count > 0:
score /= count
eval_cat_list["qbench"] = score
print("qbench", end = ': ')
print('{:.2f}'.format(100 * score))
with open(os.path.join(args.result_dir,'eval_cat.json'), 'w') as f:
json.dump(eval_cat_list, f, indent=4) |